驅動 SiC/GaN 功率開關需要設計一個完整的 IC 生態(tài)系統(tǒng),這些 IC 經(jīng)過精密調(diào)整,彼此配合。于是這里的設計重點不再只是以開關為中心……
2018-06-22 09:19:284847 據(jù)日本富士經(jīng)濟(Fuji Keizai)6月發(fā)布功率半導體全球市場的報告預估,汽車,電氣設備,信息和通信設備等領域對下一代功率半導體(SiC和GaN)需求的預計將增加。預計2030年(與2018
2019-06-25 11:22:427827 GaN中游我們可以將其分為器件設 計、晶圓制造、封裝測試三個部分。 作為化合物半導體的一類,與SiC類似,全球產(chǎn)能普遍集中在IDM廠商上,不過相比于SiC,GaN在設計和制造環(huán)節(jié)正在往垂直分工的模式
2022-07-18 01:59:454002 在未來十年,受電源、光伏(PV)逆變器以及工業(yè)電動機的需求驅動,新興的碳化硅(SiC)和氮化鎵(GaN)功率半導體市場將以18%的驚人速度穩(wěn)步增長。據(jù)有關報告稱,至2022年SiC和GaN功率半導體
2013-04-26 10:10:041532 SiC、GaN等下一代功率器件的企業(yè)有所增加,為數(shù)眾多的展示吸引了各方關注。SiC和GaN也變得不再是“下一代”。
2013-07-09 09:46:493475 市場研究機構IHS最新統(tǒng)計報告指出,隨著愈來愈多供應商推出產(chǎn)品,2015年碳化矽(SiC)功率半導體平均銷售價格已明顯下滑,有望刺激市場加速采 用;與此同時,氮化鎵(GaN)功率半導體也已開始
2016-03-24 08:26:111305 (SiC)和氮化鎵(GaN)占有約90%至98%的市場份額。供應商。WBG半導體雖然還不是成熟的技術,但由于其優(yōu)于硅的性能優(yōu)勢(包括更高的效率,更高的功率密度,更小的尺寸和更少的冷卻),正在跨行業(yè)進軍。 使用基于SiC或GaN的功率半導體來獲
2021-04-06 17:50:533168 碳化硅 (SiC) MOSFET 和氮化鎵 (GaN) HEMT 等寬帶隙 (WBG) 功率器件的采??用目前正在廣泛的細分市場中全面推進。在許多情況下,WBG 功率器件正在取代它們的硅對應物,并在
2022-07-29 14:09:53807 超結(SJ)硅MOSFET自1990年代后期首次商業(yè)化用于功率器件應用領域以來,在400–900V功率轉換電壓范圍內(nèi)取得了巨大成功。參考寬帶隙(WBG)、碳化硅(SiC)和氮化鎵(GaN)功率器件,我們將在本文中重點介紹其一些性能特性和應用空間。
2023-06-08 09:33:241389 功率半導體”多被用于轉換器及逆變器等電力轉換器進行電力控制。目前,功率半導體材料正迎來材料更新?lián)Q代,這些新材料就是SiC(碳化硅)和GaN(氮化鎵),二者的物理特性均優(yōu)于現(xiàn)在使用的Si(硅),作為“節(jié)能王牌”受到了電力公司、汽車廠商和電子廠商等的極大期待。
2013-03-07 14:43:024596 全球范圍內(nèi)5G技術的迅猛發(fā)展,為氮化鎵(GaN)和碳化硅(SiC)功率半導體制造商提供新的增長前景。2020年,GaN和SiC功率半導體市場規(guī)模為7億美元,預計2021年至2027年的復合年增長率
2021-05-21 14:57:182257 GaN 和 SiC 器件在某些方面相似,但有顯著差異。
2021-11-17 09:06:184236 電子發(fā)燒友網(wǎng)報道(文/梁浩斌)在我們談論第三代半導體的時候,常說的碳化硅功率器件一般是指代SiC MOSFET(金屬-氧化物半導體場效應晶體管),而氮化鎵功率器件最普遍的則是GaN HEMT(高電子
2023-12-27 09:11:361219 的可用性,有更多的設計者關注GaN選項。GaN比傳統(tǒng)MOSFET具有更明顯的優(yōu)勢,例如更高的開關速度和更高的效率。GaN器件GaN功率晶體管已經(jīng)存在了好幾年了。早期器件是在昂貴的襯底上制成的,例如
2017-05-03 10:41:53
柵極電荷,它可以使用高開關頻率,從而允許使用較小的電感器和電容器。 相較于SiC的發(fā)展,GaN功率元件是個后進者,它是一種擁有類似于SiC性能優(yōu)勢的寬能隙材料,但擁有更大的成本控制潛力,尤其是高功率的硅
2022-08-12 09:42:07
基于碳化硅(SiC)、氮化鎵(GaN)等寬帶隙(WBG)半導體的新型高效率、超快速功率轉換器已經(jīng)開始在各種創(chuàng)新市場和應用領域攻城略地——這類應用包括太陽能光伏逆變器、能源存儲、車輛電氣化(如充電器
2019-07-31 06:16:52
可以通過在SiC功率器件上運行HTGB(高溫柵極偏壓)和HTRB(高溫反向偏壓)應力測試來評估性能。Littelfuse在溫度為175°C的1200V,80mΩSiCMOSFET上進行了壓力測試,具有
2019-07-30 15:15:17
SiC-DMOS的特性現(xiàn)狀是用橢圓圍起來的范圍。通過未來的發(fā)展,性能有望進一步提升。從下一篇開始,將單獨介紹與SiC-MOSFET的比較。關鍵要點:?功率晶體管的特征因材料和結構而異。?在特性方面各有優(yōu)缺點,但SiC-MOSFET在整體上具有優(yōu)異的特性。< 相關產(chǎn)品信息 >MOSFETSiC-DMOS
2018-11-30 11:35:30
基于SiC/GaN的新一代高密度功率轉換器SiC/GaN具有的優(yōu)勢
2021-03-10 08:26:03
IC、電源控制器和高集成度嵌入式處理器, 將能管理復雜的多電平、多級功率回路,從而正確發(fā)揮新一代 SiC/GaN 功率轉換器的優(yōu)勢。——ADI公司再生能源戰(zhàn)略營銷經(jīng)理Stefano
2018-10-30 11:48:08
技術的另一大優(yōu)勢是其對高結溫具有超高的耐受性。這種耐受性有助于提升功率密度,減少散熱問題。[color=rgb(51, 51, 51) !important]SiC/GaN開關有助于減少損耗的其他特性
2019-07-16 23:57:01
前面對SiC的物理特性和SiC功率元器件的特征進行了介紹。SiC功率元器件具有優(yōu)于Si功率元器件的更高耐壓、更低導通電阻、可更高速工作,且可在更高溫條件下工作。接下來將針對SiC的開發(fā)背景和具體優(yōu)點
2018-11-29 14:35:23
二極管的恢復損耗非常小。主要應用于工業(yè)機器電源、高效率功率調(diào)節(jié)器的逆變器或轉換器中。2. 標準化導通電阻SiC的絕緣擊穿場強是Si的10倍,所以能夠以低阻抗、薄厚度的漂移層實現(xiàn)高耐壓。因此,在相同的耐壓值
2019-05-07 06:21:55
電流和FRD的恢復電流引起的較大的開關損耗,通過改用SiC功率模塊可以明顯減少,因此具有以下效果:開關損耗的降低,可以帶來電源效率的改善和散熱部件的簡化(例:散熱片的小型化,水冷/強制風冷的自然風冷化
2019-05-06 09:15:52
相比,能夠以具有更高的雜質(zhì)濃度和更薄的厚度的漂移層作出600V~數(shù)千V的高耐壓功率器件。高耐壓功率器件的阻抗主要由該漂移層的阻抗組成,因此采用SiC可以得到單位面積導通電阻非常低的高耐壓器件。理論上
2019-07-23 04:20:21
具有成本效益的大功率高溫半導體器件是應用于微電子技術的基本元件。SiC是寬帶隙半導體材料,與Si相比,它在應用中具有諸多優(yōu)勢。由于具有較寬的帶隙,SiC器件的工作溫度可高達600℃,而Si器件
2018-09-11 16:12:04
的不是全SiC功率模塊特有的評估事項,而是單個SiC-MOSFET的構成中也同樣需要探討的現(xiàn)象。在分立結構的設計中,該信息也非常有用。“柵極誤導通”是指在高邊SiC-MOSFET+低邊
2018-11-30 11:31:17
電流和FRD的恢復電流引起的較大的開關損耗,通過改用SiC功率模塊可以明顯減少,因此具有以下效果:開關損耗的降低,可以帶來電源效率的改善和散熱部件的簡化(例:散熱片的小型化,水冷/強制風冷的自然風冷化
2019-03-25 06:20:09
隨著現(xiàn)代技術的發(fā)展, 功率放大器已成為無線通信系統(tǒng)中一個不可或缺的部分, 特別是寬帶大功率產(chǎn)生技術已成為現(xiàn)代通信對抗的關鍵技術。作為第三代半導體材料碳化硅( SiC) , 具有寬禁帶、高熱導率、高
2019-08-12 06:59:10
描述 PMP20978 參考設計是一種高效率、高功率密度和輕量化的諧振轉換器參考設計。此設計將 390V 輸入轉換為 48V/1kW 輸出。PMP20637 功率級具有超過 140W/in^3
2022-09-23 07:12:02
在太陽能光伏(PV)和能量存儲應用中,存在功率密度增加以及始終存在的提高效率需求的趨勢。該問題的解決方案以碳化硅(SiC)功率器件的形式出現(xiàn)。 ADuM4135柵極驅動器是單通道器件,在25 V工作電壓(VDD至VSS)下具有典型的7A源/灌電流驅動能力
2020-05-27 17:08:24
CGHV96050F1是款碳化硅(SiC)基材上的氮化鎵(GaN)高電子遷移率晶體管(HEMT)。與其它同類產(chǎn)品相比,這些GaN內(nèi)部搭配CGHV96050F1具有卓越的功率附帶效率。與硅或砷化鎵
2024-01-19 09:27:13
`Cree的CGHV96100F2是氮化鎵(GaN)高電子遷移率晶體管(HEMT)在碳化硅(SiC)基板上。 該GaN內(nèi)部匹配(IM)FET與其他技術相比,具有出色的功率附加效率。 氮化鎵與硅或砷化
2020-12-03 11:49:15
CREE的CGHV96130F是碳化硅(SiC)基材上的氮化鎵(GaN)高遷移率晶體管(HEMT)與其他技術相比,CGHV96130F內(nèi)部適應(IM)FET具有出色的功率附加效率。與砷化鎵相比
2023-12-13 10:10:57
,GaN-on-SiC具有更加優(yōu)異的性能;砷化鎵或硅基氮化鎵;包含更高的擊穿場強;更高的飽和電子漂移效率和更高的導熱系數(shù)。CMPA1D1E025 選用 10 導線;25 mm x 9.9 mm;金屬/陶瓷
2024-02-27 14:09:50
`IGN0450M250是一款高功率GaN-on-SiC RF功率晶體管,旨在滿足P波段雷達系統(tǒng)的獨特需求。它在整個420-450 MHz頻率范圍內(nèi)運行。 在100毫秒以下,10%占空比脈沖條件
2021-04-01 10:35:32
功率分立和模塊解決方案的少數(shù)供應商之一。美高森美的SP6LI產(chǎn)品系列采用專為高電流SiC MOSFET功率模塊而設計的最低雜散電感封裝之一,具有五種標準模塊,在外殼溫度(Tc)為80°C的情況下,提供從
2018-10-23 16:22:24
標準的產(chǎn)品,并與具有高技術標準和高品質(zhì)要求的供應商合作。在這過程中,ROHM作為ApexMicrotechnology的SiC功率元器件供應商脫穎而出。ROHM的服務和技術支持都非常出色,使得我們能夠
2023-03-29 15:06:13
產(chǎn)品詳情:TGA2573寬帶在Qorvo生產(chǎn)0.25微米SiC工藝制備GaN高功率GaN HEMT放大器。工作從2到18 GHz,它達到40 dBm飽和輸出功率,20% PAE,和10分貝小信號增益在漏
2018-06-19 09:07:36
金屬有機物化學氣相淀積(MOCVD) 或分子束外延(MBE) 技術而制成。GaN-on-SiC 方法結合了GaN 的高功率密度功能與SiC 出色的導熱性和低射頻損耗。這就是GaN-on-SiC 成為高
2019-08-01 07:24:28
元件來適應略微增加的開關頻率,但由于無功能量循環(huán)而增加傳導損耗[2]。因此,開關模式電源一直是向更高效率和高功率密度設計演進的關鍵驅動力。 基于 SiC 和 GaN 的功率半導體器件 碳化硅
2023-02-21 16:01:16
的材料特性,各自都有各自的優(yōu)點和不成熟處,因此在應用方面有區(qū)別 。一般的業(yè)界共識是:SiC適合高于1200V的高電壓大功率應用;GaN器件更適合于40-1200V的高頻應用。在600V和1200V器件
2021-09-23 15:02:11
從本文開始進入新的一章。繼SiC概要、SiC-SBD(肖特基勢壘二極管 )、SiC-MOSFET之后,來介紹一下完全由SiC功率元器件組成的“全SiC功率模塊”。本文作為第一篇,想讓大家了解全SiC
2018-11-27 16:38:04
全SiC功率模塊與現(xiàn)有的功率模塊相比具有SiC與生俱來的優(yōu)異性能。本文將對開關損耗進行介紹,開關損耗也可以說是傳統(tǒng)功率模塊所要解決的重大課題。全SiC功率模塊的開關損耗全SiC功率模塊與現(xiàn)有
2018-11-27 16:37:30
。LMG1210具有可調(diào)節(jié)的死區(qū)時間控制,可最大程度地減少第三象限損耗。請參見TI白皮書:使用LMG1210 GaN驅動器通過空載時間控制來優(yōu)化效率。TI 在這些設計中使用了高效功率轉換 eGaN功率器件。
2019-11-11 15:48:09
在過去的十多年里,行業(yè)專家和分析人士一直在預測,基于氮化鎵(GaN)功率開關器件的黃金時期即將到來。與應用廣泛的MOSFET硅功率器件相比,基于GaN的功率器件具有更高的效率和更強的功耗處理能力
2019-06-21 08:27:30
相較于硅,碳化硅(SiC)肖特基二極管采用全新的技術,提供更出色的開關性能和更高的可靠性。SiC無反向恢復電流,且具有不受溫度影響的開關特性和出色的散熱性能,因此被視為下一代功率半導體。
2019-07-25 07:51:59
頻率和更高功率密度的開發(fā)人員更是如此。RF GaN是一項已大批量生產(chǎn)的經(jīng)驗證技術,由于其相對于硅材料所具有的優(yōu)勢,這項技術用于蜂窩基站和數(shù)款軍用/航空航天系統(tǒng)中的功率放大器。在這篇文章中,我們將比
2019-07-12 12:56:17
硅代工廠生產(chǎn),擁有相應的規(guī)模經(jīng)濟優(yōu)勢。但GaN on SiC支持高得多的功率密度,支持更高的功率輸出。這是因為SiC具有更優(yōu)秀的導熱率:大約比Si高三倍。GaN on SiC功率密度約為5W/mm,約
2018-12-05 15:18:26
`由電氣觀察主辦的“寬禁帶半導體(SiC、GaN)電力電子技術應用交流會”將于7月16日在浙江大學玉泉校區(qū)舉辦。寬禁帶半導體電力電子技術的應用、寬禁帶半導體電力電子器件的封裝、寬禁帶電力電子技術
2017-07-11 14:06:55
電流和FRD的恢復電流引起的較大的開關損耗,通過改用SiC功率模塊可以明顯減少,因此具有以下效果:開關損耗的降低,可以帶來電源效率的改善和散熱部件的簡化(例:散熱片的小型化,水冷/強制風冷的自然風冷化
2019-03-12 03:43:18
,損耗更低,高溫環(huán)境條件下工作特性優(yōu)異,有望成為新一代低損耗元件。②SiC功率元器件SiC是在熱、化學、機械方面都非常穩(wěn)定的化合物半導體,對于功率元器件來說的重要參數(shù)都非常優(yōu)異。作為元件,具有優(yōu)于Si
2017-07-22 14:12:43
顯示的是將用來驅動LMG5200的Hercules模塊。圖1:具有死區(qū)發(fā)生器的Hercules PWM模塊GaN與Hercules功率級是天生的一對兒。它們在工業(yè)和汽車應用中都能發(fā)揮很好的作用
2022-11-17 06:56:35
高效率和高密度的功率轉換。如表所示,與Si和SiC相比,具有相似RDS(on)的GaN功率晶體管在LLC關鍵參數(shù)方面具有很大的優(yōu)勢。Co(tr)、Qgd、toff和Qg的值越低,LLC轉換器在效率
2023-02-27 09:37:29
應用看,未來非常廣泛且前景被看好。與圈內(nèi)某知名公司了解到,一旦國內(nèi)品牌誰先成功掌握這種技術,那它就會呈暴發(fā)式的增加。在Si材料已經(jīng)接近理論性能極限的今天,SiC功率器件因其高耐壓、低損耗、高效率等特性
2019-09-17 09:05:05
1. 器件結構和特征SiC能夠以高頻器件結構的SBD(肖特基勢壘二極管)結構得到600V以上的高耐壓二極管(Si的SBD最高耐壓為200V左右)。因此,如果用SiC-SBD替換現(xiàn)在主流產(chǎn)品快速PN結
2019-05-07 06:21:51
針對可靠的高功率和高頻率電子設備,制造商正在研究氮化鎵(GaN)來制造具有高開關頻率的場效應晶體管(FET)由于硅正在接近其理論極限,制造商現(xiàn)在正在研究使用寬帶隙(WBG)材料來制造高效率的大功率
2022-06-15 11:43:25
采用熱傳導率更優(yōu)的SiC做襯底,因此GaN功率器件具有較高的結溫,能在高溫環(huán)境下工作。不同材料體系射頻器件功率-頻率工作區(qū)間GaN將在高功率,高頻率射頻市場優(yōu)勢明顯相比于4G,5G的通信頻段往高頻波段
2019-04-13 22:28:48
(SiC)、氮鎵(GaN)為代表的寬禁帶功率管過渡。SiC、GaN材料,由于具有寬帶隙、高飽和漂移速度、高臨界擊穿電場等突出優(yōu)點,與剛石等半導體材料一起,被譽為是繼第一代Ge、Si半導體材料、第二代GaAs
2017-06-16 10:37:22
請問一下SiC和GaN具有的優(yōu)勢主要有哪些?
2021-08-03 07:34:15
本文介紹了適用于5G毫米波頻段等應用的新興SiC基GaN半導體技術。通過兩個例子展示了采用這種GaN工藝設計的MMIC的性能:Ka頻段(29.5至36GHz)10W的PA和面向5G應用的24至
2020-12-21 07:09:34
未轉換為射頻輸出功率的直流加載電源將作為熱量耗散(除非晶體管的效率為100%)。· 因此,GaN 晶體管變得非常熱,熱管理成為重要的設計考慮因素。幸運的是,碳化硅基氮化鎵(GaN on SiC) 能夠
2018-08-04 14:55:07
新一代SiC/GaN功率轉換器的完整IC生態(tài)系統(tǒng)的最高水準。設計平臺類型眾多,既有用于高電壓、大電流SiC功率模塊的隔離式柵極驅動器板,也有完整的交流/直流雙向轉換器,其中ADSP-CM419F的軟件在
2018-10-22 17:01:41
描述此參考設計基于 LMG1210 半橋 GaN 驅動器和 GaN 功率的高電子遷移率晶體管 (HEMT),實現(xiàn)了一款數(shù)兆赫茲功率級設計。憑借高效的開關和靈活的死區(qū)時間調(diào)節(jié),此參考設計不僅可以顯著
2018-10-17 15:39:59
“功率半導體”多被用于轉換器及逆變器等電力轉換器進行電力控制。目前,功率半導體材料正迎來材料更新?lián)Q代,這些新材料就是SiC(碳化硅)和GaN(氮化鎵),二者的物理特性均優(yōu)
2012-07-02 11:18:331387 據(jù)權威媒體分析,SiC和GaN器件將大舉進入電力電子市場,預計到2020年,SiC和GaN功率器件將分別獲得14%和8%市場份額。未來電力電子元器件市場發(fā)展將更多地集中到SiC和GaN的技術創(chuàng)新上。
2013-09-18 10:13:112463 這篇文章的目的是提供一個指南,高功率SiC MESFET和GaN HEMT晶體管的熱性能的克里寬禁帶半導體設備的用戶。
2017-06-27 08:54:1123 安華高科技公司(Avago Technologies)推出了四款光電耦合器新產(chǎn)品,主要用于使用 SiC(碳化硅)和 GaN(氮化鎵)制造的功率半導體器件等的門極驅動。新產(chǎn)品的最大特點是最大傳播延遲
2017-09-12 16:07:001 1.GaN 功率管的發(fā)展微波功率器件近年來已經(jīng)從硅雙極型晶體管、場效應管以及在移動通信領域被廣泛應用的LDMOS 管向以碳化硅(SiC)、氮鎵(GaN) 為代表的寬禁帶功率管過渡。SiC、GaN材料
2017-11-09 11:54:529 了解關鍵的ADI iCoupler?數(shù)字隔離、控制、傳感和通信技術如何直接通過部署SiC和GaN功率轉換及日益復雜的多級控制拓撲來解決面臨的挑戰(zhàn)。
2018-06-05 13:45:004830 功率半導體市場一直都處于溫溫不火的狀態(tài)的,但是隨著混合動力及電動汽車、電力和光伏(PV)逆變器的需求,GaN和SiC功率半導體市場規(guī)模呈現(xiàn)井噴式增長。
2018-05-23 15:00:059833 RFSW2100D是一種GaN-on-SiC大功率離散RF開關,設計用于軍事和商業(yè)無線基礎設施、工業(yè)/科學/醫(yī)療和通用寬帶RF控制和交換應用。采用先進的高功率密度氮化鎵(GaN)半導體工藝
2018-08-31 11:26:006 基于碳化硅(SiC)和氮化鎵(GaN)等材料的新型功率開關技術的出現(xiàn)促使性能大幅提升,超越了基于MOSFET和IGBT技術的傳統(tǒng)系統(tǒng)。
2018-10-04 09:03:004753 基于碳化硅(SiC)和氮化鎵(GaN)等材料的新型功率開關技術的出現(xiàn)促使性能大幅提升,超越了基于MOSFET和IGBT技術的傳統(tǒng)系統(tǒng)。
2019-01-05 09:01:093767 新一代逆變器採用GaN和SiC等先進開關技術。寬帶隙功率開關,具有更出色的功效、更高的功率密度、更小巧的外形和更輕的重量,通過提高開關頻率來實現(xiàn)。
2019-07-25 06:05:001892 新一代逆變器采用GaN和SiC等先進開關技術。寬帶隙功率開關,具有更出色的功效、更高的功率密度、更小巧的外形和更輕的重量,通過提高開關頻率來實現(xiàn)。
2019-06-21 06:16:002722 碳化硅(SiC)是最成熟的WBG寬帶隙半導體材料, 它已經(jīng)廣泛用于制造開關器件,例如MOSFET和晶閘管。氮化鎵(GaN)具有作為功率器件半導體的潛力,并且在射頻應用中是對硅的重大改進。
2020-04-30 14:35:3111723 11月15日消息 根據(jù) Omdia 的《2020 年 SiC 和 GaN 功率半導體報告》,在混合動力及電動汽車、電源和光伏逆變器需求的拉動下,碳化硅(SiC)和氮化鎵(GaN)功率半導體的新興市場
2020-11-16 10:19:322223 今日寬禁帶半導體聯(lián)盟秘書長陸敏博士發(fā)表了主題為“SiC和GaN功率電子技術及產(chǎn)業(yè)發(fā)展趨勢”的演講。
2020-12-04 11:12:042262 ,特別適用于5G射頻和高壓功率器件。 據(jù)集邦咨詢(TrendForce)指出,因疫情趨緩所帶動5G基站射頻前端、手機充電器及車用能源等需求逐步提升,預期2021年GaN通訊及功率器件營收分別為6.8億和6100萬美元,年增30.8%及90.6%,SiC器件功率領域營收
2021-05-03 16:18:0010174 日前,SiC & GaN功率器件設計和方案商派恩杰官方正式宣告與德國Foxy Power合作組建歐洲&北美銷售團隊。
2021-09-09 09:39:171065 半導體的關鍵特性是能帶隙,能帶動電子進入導通狀態(tài)所需的能量。寬帶隙(WBG)可以實現(xiàn)更高功率,更高開關速度的晶體管,WBG器件包括氮化鎵(GaN)和碳化硅(SiC),以及其他半導體。
2022-04-16 17:13:015712 寬帶隙半導體具有許多特性,這些特性使其對高功率、高溫器件應用具有吸引力。本文綜述了三種重要材料的濕法腐蝕,即ZnO、GaN和SiC。雖然ZnO在包括HNO3/HCl和HF/HNO3的許多酸性溶液
2022-07-06 16:00:211642 在基本半導體特性(帶隙、臨界電場和電子遷移率)的材料比較中,GaN 被證明是一種優(yōu)異的材料。“Si 的帶隙略高于一個電子伏特,臨界電子場為 0.23 MV/cm,而 GaN 的電子遷移率和帶隙更寬
2022-08-03 08:04:292748 由氮化鎵 (GaN) 和碳化硅 (SiC)。基于 GaN 和 SiC 的器件可以提供最新一代電源應用所需的高性能。然而,它們極高的功率密度應該得到適當?shù)墓芾恚@使得創(chuàng)新的熱管理技術成為一個需要考慮的關鍵方面。
2022-08-03 08:04:57996 隨著硅接近其物理極限,電子制造商正在轉向非常規(guī)半導體材料,特別是寬帶隙(WBG)半導體,如碳化硅(SiC)和氮化鎵(GaN)。由于寬帶隙材料具有相對較寬的帶隙(與常用的硅相比),寬帶隙器件可以在高壓、高溫和高頻下工作。寬帶隙器件可以提高能效并延長電池壽命,這有助于推動寬帶隙半導體的市場。
2023-02-05 14:25:15676 本文介紹了使用多個電流探頭研究SiC和GaN功率半導體器件的電極間電容。它分為四部分:雙電流探頭法原理、測量結果、三電流探頭法原理和測量結果。
2023-02-19 17:06:18350 氧化鎵有望成為超越SiC和GaN性能的材料,有望成為下一代功率半導體,日本和海外正在進行研究和開發(fā)。
2023-04-14 15:42:06363 SiC和GaN被稱為“寬帶隙半導體”(WBG),因為將這些材料的電子從價帶炸毀到導帶所需的能量:而在硅的情況下,該能量為1.1eV,SiC(碳化硅)為3.3eV,GaN(氮化鎵)為3.4eV。這導致了更高的適用擊穿電壓,在某些應用中可以達到1200-1700V。
2023-08-09 10:23:39431 SiC與GaN的興起與未來
2023-01-13 09:06:226 設計人員正在尋求先進技術,從基于硅的解決方案轉向使用碳化硅 (SiC) 和氮化鎵 (GaN) 等寬帶隙 (WBG) 材料的功率半導體技術,從而在創(chuàng)新方面邁出下一步。他們尋求用于電動汽車 (EV) 的功率密度更高、效率更高的電路。
2023-11-12 11:30:001163 1月8日,Luminus Devices宣布,湖南三安半導體與其簽署了一項合作協(xié)議,Luminus將成為湖南三安SiC和GaN產(chǎn)品在美洲的獨家銷售渠道,面向功率半導體應用市場。
2024-01-13 17:17:561042
評論
查看更多