熱電偶入門
托馬斯?塞貝克在1822年發(fā)現(xiàn)了熱電偶原理。熱電偶是一種簡單的溫度測量裝置,由兩種不同金屬(金屬1和金屬2)組成(圖1)。塞貝克發(fā)現(xiàn)不同的金屬將產(chǎn)生不同的、與溫度梯度有關的電勢。如果這些金屬焊接在一起構成溫度傳感器結(jié)(TJUNC,也稱為溫度結(jié)),另一端未連接的差分結(jié)(TCOLD,作為恒溫參考端)上將呈現(xiàn)出電壓,VOUT,該電壓與焊接結(jié)的溫度成正比。從而使熱電偶輸出隨溫度變化的電壓/電荷,無需任何電壓或電流激勵。圖1. 熱電偶簡化電路
VOUT溫差(TJUNC?- TCOLD)是金屬1及金屬2的金屬類型的函數(shù)。該函數(shù)在美國國家標準與技術研究院(NIST) ITS-90熱電偶數(shù)據(jù)庫[1]中嚴格定義,覆蓋了絕大多數(shù)實用金屬1和金屬2組合。利用該數(shù)據(jù)庫,可根據(jù)VOUT測量值計算相對溫度TJUNC。然而,由于熱電偶以差分方式測量TJUNC,為了確定溫度結(jié)的實測溫度,就必須知道冷端絕對溫度(單位為°C、°F或K)。所有現(xiàn)代熱電偶系統(tǒng)都利用另一絕對溫度傳感器(PRTD、硅傳感器等)精密測量冷端溫度,并進行數(shù)學補償。
圖1所示熱電偶簡化電路的溫度公式為:
式中:
Tabs = TJUNC?+ TCOLD (式1)
Tabs為溫度結(jié)的絕對溫度;
TJUNC為溫度結(jié)與基準冷端的相對溫度;
TCOLD為冷端參考端的絕對溫度。
熱電偶的類型各種各樣,但是針對具體的工業(yè)或醫(yī)療環(huán)境可以選擇最適合的異金屬對兒。這些金屬和/或合金組合被NIST及國際電工委員會標準化,簡寫為E、J、T、K、N、B、S、R等。NIST和IEC為常見的熱電偶類型提供了熱電偶參考表[1]。
NIST和IEC還為每種熱電偶類型開發(fā)了標準數(shù)學模型。這些冪級數(shù)模型采用獨特的系數(shù)組合,每種熱電偶類型及不同溫度范圍的系數(shù)都不同[1]。
表1所示為部分常見熱電偶類型(J、K、E和S)的例子。
表1. 常見的熱電偶類型
Thermocouple Type | Positive Conductor | Negative Conductor | Temperature Range (°C) | Seebeck Coefficient at +20°C |
J | Chromel | Constantan | 0 to 760 | 51μV/°C |
K | Chromel | Alumel | -200 to +1370 | 41μV/°C |
E | Chromel | Constantan | -100 to +1000 | 62μV/°C |
S | Platinum (10% Rhodium) | Rhodium | 0 to 1750 | 7μV/°C |
J型熱電偶具有相對較高的塞貝克系數(shù)、高精度和低成本,應用廣泛。這些熱電偶使用相對簡單的線性化算法,即可達到±0.1°C的測量精度。
K型熱電偶覆蓋的溫度范圍寬,在工業(yè)測量領域的應用非常廣泛。這些熱電偶具有適中的高塞貝克系數(shù)、低成本及良好的抗氧化性。K型熱電偶的精度高達±0.1°C。
E型熱電偶的應用沒有其它類型熱電偶普及。然而,這組熱電偶的塞貝克系數(shù)最高。E型熱電偶所需的測量分辨率低于其它類型。E型熱電偶的測量精度可達到±0.5°C,需要的線性化計算方法相對復雜。
S型熱電偶由鉑和銠組成,這對組合能夠在非常高的氧化環(huán)境下實現(xiàn)穩(wěn)定、可復現(xiàn)的測量。S型熱電偶的塞貝克系數(shù)較低,成本相對較高。S型熱電偶的測量精度可達到±1°C,需要的線性化算法相對復雜。
應用示例
熱電偶電路設計包括具有差分輸入及能夠分辨微小電壓的高分辨率ADC、穩(wěn)定的低漂移基準,以及準確測量冷端溫度的方法。圖2所示為簡化原理圖。MX7705是一款16位、Σ-Δ ADC,內(nèi)置可編程增益放大器(PGA),無需外部精密放大器,能夠分辨來自熱電偶的微伏級電壓。冷端溫度利用MAX6627遠端二極管傳感器以及位于熱電偶連接器處、連接成二極管的晶體管測量。MX7705的輸入共模范圍擴展至低于地電勢30mV,可實現(xiàn)有限的負溫度范圍[2]。
圖2. 熱電偶測量電路。MX7705測量熱電偶輸出,MAX6627和外部晶體管測量冷端溫度,MAX6002為MX7705提供2.5V精密電壓基準。
也有針對具體應用設計的IC,用于熱電偶信號調(diào)理。這些IC集成本地溫度傳感器、精密放大器、ADC和電壓基準。例如,MAX31855為冷端補償熱電偶至數(shù)字轉(zhuǎn)換器,可數(shù)字化K、J、N、T或E型熱電偶信號。MAX31855以14位(0.25°C)分辨率測量熱電偶溫度(圖3)。
圖3. 集成冷端溫度補償?shù)腁DC,轉(zhuǎn)換熱電偶電壓時無需外部補償。
誤差分析
冷端補償
熱電偶為差分傳感器,利用溫度結(jié)和冷端之間的溫差產(chǎn)生輸出電壓。根據(jù)式1,只有精密測得冷端絕對溫度(TREF)時,才能得到溫度結(jié)的絕對溫度(Tabs)。可利用新型鉑RTD (PRTD)測量冷端絕對溫度。它在很寬的溫度范圍內(nèi)提供良好的性能,尺寸小、功耗低,成本非常合理。
圖4所示為精密DAS的簡化原理圖,采用了MAX11200?(24位、Σ-Δ ADC)評估(EV)板,可實現(xiàn)熱電偶溫度測量。本例中,利用R1 - PT1000 (PTS 1206,1000Ω)測量冷端絕對溫度。該解決方案能夠以±0.30°C或更高精度測量冷端溫度[3]。
圖4. 熱電偶DAS簡化圖
如圖4所示,MAX11200的GPIO設置為控制精密多路復用器MAX4782,它選擇熱電偶或PRTD R1 - PT1000。該方法可利用單個ADC實現(xiàn)熱電偶或PRTD的動態(tài)測量。提高了系統(tǒng)精度,降低校準要求。
非線性誤差
熱電偶為電壓發(fā)生裝置。但是,大多數(shù)常見熱電偶[2,4]的輸出電壓作為溫度的函數(shù)呈現(xiàn)非常高的非線性。圖4和圖5中說明,如果沒有經(jīng)過適當補償,常見的工業(yè)K型熱電偶的非線性誤差會超過數(shù)十攝氏度。
圖5. K型熱電偶的輸出電壓和溫度關系圖。曲線在-50°C至+350°C范圍內(nèi)線性度較好;在低于-50°C和高于+350°C時,相對于絕對線性度存在明顯偏差。[1]
圖6. 相對于直線逼近的偏差,假設線性輸出為從-50°C至+350°C,平均靈敏度為k = 41μV/°C。[1]
IEC采用的NIST ITS-90等現(xiàn)代熱電偶標準化處理、查找表和公式數(shù)據(jù)庫[1],是當前系統(tǒng)間互換熱電偶類型的基礎。通過這些標準,熱電偶很容易由相同或不同制造商的其它熱電偶所替代,而且經(jīng)過最少的系統(tǒng)設計更新或校準即可確保性能指標。
NIST ITS-90熱電偶數(shù)據(jù)庫提供了詳細的查找表。通過使用標準化多項式系數(shù)[1],還可利用多項式在非常寬的溫度范圍內(nèi)將熱電偶電壓換算成溫度(°C)。
根據(jù)NIST ITS-90熱電偶數(shù)據(jù)庫,多項式系數(shù)為:
式中:
T = d0?+ d1E + d2E2 + ... dNEN (式2)
T為溫度,單位為°C;
E為VOUT,熱電偶輸出,單位為mV;
dN為多項式系數(shù),每一熱電偶的系數(shù)是唯一的;
N = 多項式的最大階數(shù)。
表2所示為一個K型熱電偶的NIST (NBS)多項式系數(shù)。
表2. K型熱電偶系數(shù)
Type-K Thermocouple Coefficients | |||
Temperature Range (°C) | -200 to 0 | 0 to 500 | 500 to 1372 |
Voltage Range (mV) | -5.891 to 0 | 0 to 20.644 | 20.644 to 54.886 |
Coefficients | ? | ||
d0 | 0.0000000E+00 | 0.0000000E+00 | -1.3180580E+02 |
d1 | 2.5173462E+01 | 2.5083550E+01 | 4.8302220E+01 |
d2 | -1.1662878E+00 | 7.8601060E+02 | -1.6460310E+00 |
d3 | -1.0833638E+00 | -2.5031310E-01 | 5.4647310E-02 |
d4 | -8.9773540E-01 | 8.3152700E-02 | -9.6507150E-04 |
d5 | -3.7342377E-01 | -1.2280340E-02 | 8.8021930E-06 |
d6 | -8.6632643E-02 | 9.8040360E-04 | -3.1108100E-08 |
d7 | -1.0450598E-02 | 4.4130300E-05 | — |
d8 | -5.1920577E-04 | 1.0577340E-06 | — |
d9 | — | -1.0527550E-08 | — |
Error Range (°C) | -0.02 to 0.04 | -0.05 to 0.04 | -0.05 to 0.06 |
利用表2中的多項式系數(shù),能夠在-200°C至+1372°C溫度范圍內(nèi)以優(yōu)于±0.1°C的精度計算溫度T。大多數(shù)常見熱電偶都有不同系數(shù)表可用[1]。
同樣,在-200°C至0、0至+500°C和+500°C至+1372°C溫度范圍也可以找到類似的NIST ITS-90系統(tǒng),能夠以更高精度(低于±0.1°C,相對于±0.7°C)計算溫度。與原來的“單”間隔表進行比較即可看出這點[2]。
ADC規(guī)格參數(shù)/分析
表3所示為MAX11200的基本性能指標,具有圖4中所示的電路特性。表3. MAX11200的主要技術指標
? | MAX11200 | Comments |
Sample Rate (sps) | 10 to 120 | The MAX11200's variable oversampling rate can be optimized for low noise and for -150dB line-noise rejection at 50Hz or 60Hz. |
Channels | 1 | GPIOs allow external?multiplexer?control for multichannel measurements. |
INL (ppm, max) | ±10 | Provides very good measurement linearity. |
Offset Error (μV) | ±1 | Provides almost zero offset measurements. |
Noise-Free Resolution (Bits) | 19.0 at 120sps; 19.5 at 60sps; 21.0 at 10sps | Very high?dynamic range?with low power. |
VDD?(V) |
AVDD (2.7 to 3.6) DVDD (1.7 to 3.6) |
AVDD and DVDD ranges cover the industry's popular power-supply ranges. |
ICC?(μA, max) | 300 | Highest resolution per unit power in the industry; ideal for portable applications. |
GPIOs | Yes | Allows external device control, including local multiplexer control. |
Input Range | 0 to VREF, ±VREF | Wide input ranges |
Package |
16-QSOP, 10-μMAX? (15mm2) |
Some models like the?MAX11202?are offered in a 10-μMAX package—a very small size for space-constrained designs. |
本文中使用的MAX11200是一款低功耗、24位、Σ-Δ ADC,適合于需要寬動態(tài)范圍、高分辨率的低功耗應用。利用該ADC,基于式3和4可計算圖3電路的溫度分辨率。
式中:
(式3) (式4)
Rtlsb為熱電偶在1 LSB時的分辨率;
Rtnfr為熱電偶無噪聲分辨率(NFR);
VREF為基準電壓;
Tcmax為測量范圍內(nèi)的熱電偶最大溫度;
Tcmin為測量范圍內(nèi)的熱電偶最小溫度;
Vtmax為測量范圍的熱電偶最大電壓;
Tcmax為測量范圍內(nèi)的熱電偶最小電壓;
FS為ADC滿幅編碼,對于雙極性配置的MAX11200為(223-1);
NFR為ADC無噪聲分辨率,對于雙極性配置的MAX11200為(220-1),10Sa/s時。
表4所列為利用式3和4計算表1中K型熱電偶的測量分辨率。
表4. K型熱電偶在不同溫度范圍內(nèi)的測量分辨率
Temperature Range (°C) | -200 to 0 | 0 to 500 | 500 to 1372 |
Voltage Range (mV) | -5.891 | 20.644 | 34.242 |
Rtlsb Resolution (°C/LSB) | 0.0121 | 0.0087 | 0.0091 |
Rtnfr Resolution (°C/NFR) | 0.0971 | 0.0693 | 0.0729 |
表4中提供了每個溫度范圍內(nèi)的°C/LSB誤差和°C/NFR誤差計算值。無噪聲分辨率(NFR)表示ADC能夠可靠區(qū)分的最小溫度值。對于整個溫度范圍,NFR值低于0.1°C,對于工業(yè)和醫(yī)療應用中的大多數(shù)熱電偶遠遠足夠。
熱電偶與MAX11200評估板的連接
MAX11200EVKIT提供了全功能、高分辨率DAS。評估板可幫助設計工程師快速完成項目開發(fā),例如驗證圖4所示解決方案。在圖4所示原理圖中,常見的K型OMEGA熱電偶(KTSS-116 [5])連接至差分評估板輸入A1。利用Maxim應用筆記4875中介紹的高性價比比例方案,測量冷端溫度的絕對值[3]。R1 (PT1000)輸出連接至評估板輸入A0。MAX11200的GPIO控制精密多路復用器MAX4782,復用器動態(tài)選擇將熱電偶或PRTD R1輸出連接至MAX11200的輸入。
K型熱電偶(圖3、4)在-50°C至+350°C范圍內(nèi)的線性度適當。對于有些不太嚴格的應用,線性逼近公式(式5)能大大降低計算量和復雜度。
近似絕對溫度可計算為:
式中:
(式5)
E為實測熱電偶輸出,單位為mV;
Tabs為K型熱電偶的絕對溫度,單位為°C;
Tcj為PT1000實測的熱電偶冷端溫度,單位為°C [3];
Ecj為利用Tcj計算得到的冷端熱電偶等效輸出,單位為mV。
所以:
k = 0.041mV/°C——從-50°C至+350°C范圍內(nèi)的平均靈敏度
然而,為了在更寬的溫度范圍(-270°C至+1372°C)內(nèi)精密測量,強烈建議采用多項式(式2)和系數(shù)(根據(jù)NIST ITS-90):
式中:
Tabs = ?(E + Ecj) (式6)
Tabs為K型熱電偶的絕對溫度,單位為°C;
E為實測熱電偶輸出,單位為mV;
Ecj為利用Tcj計算得到的冷端熱電偶等效輸出,單位為mV;
f為式2中的多項式函數(shù);
TCOLD為PT1000實測的熱電偶的冷端溫度,單位為°C。
圖7所示為圖4的開發(fā)系統(tǒng)。該系統(tǒng)包括經(jīng)認證的精密校準器,F(xiàn)luke?-724,作為溫度模擬器代替K型OMEGA熱電偶。
詳細圖片(PDF, 3.1MB)
圖7. 圖4開發(fā)系統(tǒng)
Fluke-724校準器提供與K型熱電偶在-200°C至+1300°C范圍內(nèi)輸出相對應的精密電壓,送至基于PT1000的冷端補償模塊?;贛AX11200的DAS動態(tài)選擇熱電偶或PRTD測量值,并通過USB端口將數(shù)據(jù)送至筆記本計算機。專門開發(fā)的DAS軟件采集并處理熱電偶和PT1000輸出產(chǎn)生的數(shù)據(jù)。
表5列出了-200°C至+1300°C溫度范圍內(nèi)的測量和計算值,采用式5和6。
表5. -200°C至+1300°C范圍的測量計算
Temperature (Fluke-724) (°C) | PT1000 Code Measured at "Cold Junction" (LSB) | Thermocouple Code Adjusted to 0°C by PT1000 Measurements (LSB) | Temperature Calculated by Equation 6 and Table 2 (°C) | Temperature Error vs. Calibrator (°C) | Temperature Calculated by "Linear" Equation 5 (°C) |
-200 | 326576 | -16463 | -199.72 | 0.28 | -143.60 |
-100 | 326604 | -9930 | -99.92 | 0.08 | -86.62 |
-50 | 326570 | -5274 | -50.28 | -0.28 | -46.01 |
0 | 326553 | 6 | 0.00 | 0.00 | 0.05 |
20 | 326590 | 2257 | 20.19 | 0.19 | 19.68 |
100 | 326583 | 11460 | 100.02 | 0.02 | 99.96 |
200 | 326486 | 22779 | 200.18 | 0.18 | 198.69 |
500 | 326414 | 57747 | 500.16 | 0.16 | 503.70 |
1000 | 326520 | 115438 | 1000.18 | 0.18 | 1006.92 |
1300 | 326544 | 146562 | 1300.09 | 0.09 | 1278.40 |
如表5所示,利用式6,基于MAX11200的DAS系統(tǒng)在非常寬的溫度范圍內(nèi)可達到±0.3°C數(shù)量級的精度。式5中的線性逼近法在很窄的-50°C至+350°C范圍內(nèi)僅能實現(xiàn)1°C至4°C的精度。
注意,式6需要相對復雜的線性化計算算法。
大約十年之前,在DAS系統(tǒng)設計中實現(xiàn)此類算法會受到技術和成本的限制。當今的現(xiàn)代化處理器速度快、性價比高,解決了這些難題。
總結(jié)
最近幾年,適用于-270°C至+1750°C溫度范圍的高性價比、熱電偶溫度檢測技術取得較大進展。在改進溫度測量和范圍的同時,成本也更加合理,功耗更低。如果ADC和熱電偶直接連接,這些基于熱電偶的溫度測量系統(tǒng)需要低噪聲ADC (如MAX11200)。熱電偶、PRTD和ADC集成至電路時,能夠?qū)崿F(xiàn)非常適用于便攜式檢測應用的高性能溫度測量系統(tǒng)。
MAX11200具有較高的無噪聲分辨率、集成緩沖器和GPIO驅(qū)動器,可直接連接任何傳統(tǒng)的熱電偶及高分辨率PRTD (如PT1000),無需額外的儀表放大器或?qū)S?a target="_blank">電流源。更少的接線和更低的熱誤差進一步降低系統(tǒng)復雜性和成本,使設計者能夠?qū)崿F(xiàn)DAS與熱電偶及冷端補償模塊的簡單接口。
評論
查看更多