由圖6可以得出下列公式:
Vs = (V+) x Rt/(R1+R2+Rt) 公式12
Vref = (V+) x R1/(R1+R2+Rt) 公式13
將公式12中的Vs和公式13中的Vref代入公式4,得出圖6中ADC的輸出。經過簡化可得公式14。公式14表示:如果R1是定值,D則正比于、且僅隨Rt的變化而變化,這正是所期望的結果。
D = FS x K x (Rt/R1) 公式14
由公式14 可以看出,R2不影響讀數;R2降低了Rt所消耗的功率。如果沒有R2的話,Rt的自身熱量將導致溫度示數出現很大誤差。R2還降低了ADC的共模輸入電壓。這對某些共模輸入電壓范圍小于電源電壓的ADC是非常必要的。
類似于MAX1403的ADC包含用于驅動RTD的電流源。然而,它們并不是精密電流源,還需要進行一些校準。校準通常是采用一個額外的ADC輸入來測量由相同的電流源驅動的參考電阻來實現的。然后,采用軟件按照已知電阻的測量值依比例確定未知電阻的測量值。雖然這種技術可以很好地工作,不過,將R1作為參考電阻更加簡單并且無需額外的ADC輸入。板上的電流源仍能用來激勵RTD和參考電阻。用一個電流源替換圖6中的R2不會對公式14產生影響。
一些ADC可提供兩個互相匹配的電流源用于精確測定遠程RTD。在這些應用中長導線的電阻會增加RTD的阻抗,從而產生誤差,必須想辦法去除。成本最低的解決方案是采用三線RTD。如圖7所示,電流源1可用于產生RTD兩端的壓降。該電流源還在通向RTD的上部導線上產生額外的壓降。為了補償這個多余的壓降,用電流源2在中間的導線上產生一個壓降。通過RTD底部的導線使這兩個電流源流向地。RTD上三根導線的長度和材料都相同,這樣可使彼此之間的電阻非常接近。匹配電阻傳送匹配電流可產生匹配的壓降。因此,上部的兩根導線壓降彼此抵消,ADC上的差分輸入電壓與RTD兩端的電壓相同。
圖7. MAX1403 ADC有兩個匹配的電流源,在該電路中,電流源1用于產生RTD兩端的壓降,電流源2用于產生中間導線的壓降。
溫度和壓力
? ? ? ?圖8結合了圖5和圖6中的設計理念,采用一個很簡單的電路,以單個電阻作為基準同時測量溫度和壓力。Vs1和Vs2的幅值相差很大。這個差值可通過改變ADC (例如MAX1415)內置可編程增益放大器(PGA)的增益進行調節。這些轉換器允許PGA對每個通道都設置不同的增益。增益的改變可使公式4中的K值改變,因此,允許單個參考電壓能夠適應較寬范圍的輸入電壓。
圖8. 用單個電阻作為基準的簡單電路測量溫度和壓力
惠斯通電橋
? ? ? 惠斯通電橋是由Charles Wheatstone爵士(1802至1875)在電子學發展的早期階段發明的?;菟雇姌蛲ㄟ^對三個已知電阻值和一個未知電阻值進行比較來測量電阻。當電橋恰好達到平衡時,電阻測量值與激勵電壓、儀表精度或電路中的儀表負載無關。在尚不具備電壓標準和高品質儀表的時代,這個條件是非常重要的。然而,橋式電路在當前仍很流行,因為在所有電橋電阻具有相同的溫度系數時,它們不會產生大的失調并能抑制溫度效應。
? ? ? 圖9是一個由同一電壓源供電的兩個分壓器組成的惠斯通電橋。習慣將電橋畫成菱形,因為這種形狀強調了同一電壓源為每個分壓器供電的重要性。電橋的輸出(Vo)是兩個分壓器輸出電壓之差(公式15)。當Vo為零時,稱電橋達到平衡。在這種條件下,因為Ve與一個為零項相乘,所以激勵電壓(Ve)的精確值并不重要。公式16可計算出平衡電橋中未知電阻(Ru)的阻值。在實際應用中,通常使Ra = Rb,這樣公式16可簡化為Ru = Rc。
圖9. 由同一個電壓源供電的分壓器組成的惠斯通電橋示意圖
Vo = Vb(Rc/(Rc+Ru) - Rb/(Ra+Rb)) 公式15
若Vo = 0,則Ru = Rc x Ra/Rb 公式16
目前已經很少使用平衡電橋電路測量電阻,但是在傳感器中采用非平衡電橋相當常見。在工廠校準時,電橋通常被平衡在一個優選的工作點上;通過測量電橋中的不平衡來測量與該點的偏差。下面舉例說明以該方式使用電橋的優點。
假定將一個硅應力計與薄膜相粘合,構成一個壓力傳感器,并具有所期望的壓力分辨率(0.1%)。在0psi和25°C條件下,電阻的阻值為5000Ω。在100psi (滿量程壓力)和25°C的條件下,電阻值增加2%,達到5100Ω。除了對應力敏感,電阻對溫度也敏感,具有2000ppm/°C的電阻溫度系數(TCR)。
由于在整個壓力范圍內電阻變化了100Ω,因此必須能夠分辨0.1—#937;的電阻才能獲得0.1psi (0.1%)的壓力分辨率。測量5000Ω中的0.1Ω相當于50,000分之一或15.6位的分辨率。比分辨率更嚴重的問題是溫度變化的影響。由于電阻具有較高的TCR,溫度每變化1°C,相當于壓力變化10psi對電阻的影響。每攝氏度的溫度變化對電阻的影響相當于滿量程的10%。
現在考慮電橋電路中采用相同的電阻,激勵電壓為2V時的情況。其他三個電阻都是5000Ω,并和感應電阻具有相同的TCR。這些電阻的安裝條件能夠保證其等溫。這種方式具有兩個顯著的優點。
該應用中電橋的最大優點是它能抑制溫度引起的變化。分析公式15發現TCR不再是問題。即使電橋電阻加倍輸出仍保持不變。只要所有電阻按同比例變化,其輸出不變!
電橋的第二個優點是降低了分辨率要求。在壓力為0psi時,電橋輸出是0mV,在100psi時電橋輸出為10mV。要測量0.1psi的壓力,則需要從10mV中分辨10?V。相對于直接測量電阻需要15.6位的分辨率而言,只需要10位的分辨率。
從實際應用的角度來看,10位ADC不能直接測量10?V的信號。信號必須放大。信號放大的成本可能會使無需外部放大器的高分辨率ADC更吸引人。低分辨率方案的最大優點在于其對基準的要求。設計能在整個時間和溫度范圍內穩定達到16位分辨率的電壓基準、電流源或參考電阻通常是不切實際的。
該實例中的數值選取不是用來刻意突出電橋的重要性。這些數值對于許多壓阻式壓力傳感器非常典型(見附錄2)。
惠斯通電橋的線性化
使用非平衡惠斯通電橋的缺點是其具有非線性。公式15分母中的Ru項表示:電橋的輸出與Ru不是線性函數關系。電阻變化非常小時線性誤差也很小,而當電橋不平衡時線性誤差也變大。幸運的是,如果ADC參考電壓來自電橋的話,就可消除這個誤差。
圖10所示為一個帶數字顯示的簡單溫度傳感器。溫度感應元件(Rt)是鉑RTD。選擇鉑是因為其電阻隨溫度線性變化。電橋電路除去0°時的多余信號,這樣可使ADC的讀數等于溫度。公式17給出了圖10中的電橋信號(Vs)。公式18是ADC的參考電壓。兩信號都是Rt的非線性函數,但是它們共同作用的結果是線性的。
如何利用傳感器和ADC的比率特性來提高電子系統的精度
圖10. 在具有數字顯示的簡單的溫度傳感器中,電橋電路除去0°時的多余信號,使得ADC讀數等于溫度。
Vs = (Vb)(R3/(R2+R3) - (R1/(R1+Rt)) 公式17
Vfer = (Vb)(R1/(R1+Rt) 公式18
ADC的輸出(公式19)是將公式17和18中的Vs和Vref分別代入公式4中得出的。公式19表示采用這個參考電壓時,ADC輸出變為Rt的線性函數,并減去所期望的偏移項。
D = Rt(R3/(R1(R2+R3)) - R2/(R2+R3) 公式19
在圖10中,R3b和R1b分別調節失調量和靈敏度。當進行調節時,顯示器將直接以°C或°F為單位顯示溫度的大小。唯一的一個明顯誤差來自RTD自身的非線性。0°C至100°C范圍內該誤差僅為十分之幾攝氏度。
通過MAX1492 ADC的串行接口,還可對圖10電路的失調誤差和靈敏度誤差進行數字校正。這種校準方法不僅無需R1a和R3a,而且還提供了校正RTD中線性誤差的機會。如果需要更高的測量分辨率,可用MAX1494替換MAX1492,可使分辨率上升一位。
根據公式19,R4的值不會影響讀數。電路中增加R4可以降低RTD的自身熱量。同時也減弱了來自電橋的信號,并且降低了參考電壓。雖然MAX1492無內部PGA,但是它允許使用較小的參考電壓。使用較小的參考電壓可以省去額外的放大電路。
結束語
在許多傳感器應用中,利用簡單電路,使傳感器輸出和ADC參考輸入之間保持適當的關系,可以省去電壓基準和電流源。除了降低成本和節省空間之外,這些電路還可消除不理想基準所引入的誤差,改善性能。
評論
查看更多