人工神經網絡的基本特征有哪些?
人工神經網絡的基本特征有哪些?
由大量處理單元互聯組成的非線性、自適應信息處理系統。它是在現代神經科學研究成果的基礎上提出的,試圖通過模擬大腦神經網絡處理、記憶信息的方式進行信息處理。人工神經網絡具有四個基本特征:
(1)非線性 非線性關系是自然界的普遍特性。大腦的智慧就是一種非線性現象。人工神經元處于激活或抑制二種不同的狀態,這種行為在數學上表現為一種非線性關系。具有閾值的神經元構成的網絡具有更好的性能,可以提高容錯性和存儲容量。
(2)非局限性 一個神經網絡通常由多個神經元廣泛連接而成。一個系統的整體行為不僅取決于單個神經元的特征,而且可能主要由單元之間的相互作用、相互連接所決定。通過單元之間的大量連接模擬大腦的非局限性。聯想記憶是非局限性的典型例子
(3)非常定性 人工神經網絡具有自適應、自組織、自學習能力。神經網絡不但處理的信息可以有各種變化,而且在處理信息的同時,非線性動力系統本身也在不斷變化。經常采用迭代過程描寫動力系統的演化過程。
(4)非凸性 一個系統的演化方向,在一定條件下將取決于某個特定的狀態函數。例如能量函數,它的極值相應于系統比較穩定的狀態。非凸性是指這種函數有多個極值,故系統具有多個較穩定的平衡態,這將導致系統演化的多樣性。
人工神經網絡中,神經元處理單元可表示不同的對象,例如特征、字母、概念,或者一些有意義的抽象模式。網絡中處理單元的類型分為三類:輸入單元、輸出單元和隱單元。輸入單元接受外部世界的信號與數據;輸出單元實現系統處理結果的輸出;隱單元是處在輸入和輸出單元之間,不能由系統外部觀察的單元。神經元間的連接權值反映了單元間的連接強度,信息的表示和處理體現在網絡處理單元的連接關系中。人工神經網絡是一種非程序化、適應性、大腦風格的信息處理,其本質是通過網絡的變換和動力學行為得到一種并行分布式的信息處理功能,并在不同程度和層次上模仿人腦神經系統的信息處理功能。它是涉及神經科學、思維科學、人工智能、計算機科學等多個領域的交叉學科。人工神經網絡是并行分布式系統,采用了與傳統人工智能和信息處理技術完全不同的機理,克服了傳統的基于邏輯符號的人工智能在處理直覺、非結構化信息方面的缺陷,具有自適應、自組織和實時學習的特點。
?
非常好我支持^.^
(5) 83.3%
不好我反對
(1) 16.7%
相關閱讀:
- [電子說] SynSense時識科技發布Xylo?IMU開發套件 2023-09-28
- [MEMS/傳感技術] 用于仿生視覺傳感器內運動感知的光電分級神經元設計 2023-09-19
- [電子說] 人工神經網絡算法、PID算法、Python人工智能學習等資料包分享(附源代碼) 2023-09-15
- [電子說] npu是什么意思?npu芯片是什么意思?npu到底有什么用? 2023-08-27
- [電子說] 人工神經網絡和bp神經網絡的區別 2023-08-22
- [人工智能] 深度學習的定義和特點 深度學習典型模型介紹 2023-08-21
- [電子說] 卷積神經網絡主要包括哪些 卷積神經網絡組成部分 2023-08-21
- [電子說] 卷積神經網絡算法三大類 2023-08-21
( 發表人:admin )