在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

您好,歡迎來電子發燒友網! ,新用戶?[免費注冊]

您的位置:電子發燒友網>源碼下載>數值算法/人工智能>

語音識別系統最新實踐

大小:0.5 MB 人氣: 2017-09-30 需要積分:1

  語音作為最自然便捷的交流方式,一直是人機通信和交互最重要的研究領域之一。自動語音識別(Automatic Speech Recognition,ASR)是實現人機交互尤為關鍵的技術,其所要解決的問題是讓計算機能夠“聽懂”人類的語音,將語音中傳化為文本。自動語音識別技術經過幾十年的發展已經取得了顯著的成效。近年來,越來越多的語音識別智能軟件和應用走人了大家的日常生活,蘋果的Siri、微軟的小娜、科大訊飛的語音輸入法和靈犀等都是其中的典型代表。本文將以科大訊飛的視角介紹語音識別的發展歷程和最新技術進展。

  我們首先簡要回顧語音識別的發展歷史,然后介紹目前主流的基于深度神經網路的語音識別系統,最后重點介紹科大訊飛語音識別系統的最新進展。

  1

  語音識別關鍵突破回顧

  語音識別的研究起源于上世紀50年代,當時的主要研究者是貝爾實驗室。早期的語音識別系統是簡單的孤立詞識別系統,例如1952年貝爾實驗室實現了十個英文數字識別系統。從上世紀60年代開始,CMU的Reddy開始進行連續語音識別的開創性工作。但是這期間語音識別的技術進展非常緩慢,以至于1969年貝爾實驗室的約翰·皮爾斯(John Pierce)在一封公開信中將語音識別比作“將水轉化為汽油、從海里提取金子、治療癌癥”等幾乎不可能實現的事情。上世紀70年代,計算機性能的大幅度提升,以及模式識別基礎研究的發展,例如碼本生成算法(LBG)和線性預測編碼(LPC)的出現,促進了語音識別的發展。這個時期美國國防部高級研究計劃署(DARPA)介入語音領域,設立了語音理解研究計劃,研究計劃包括BBN、CMU、SRI、IBM等眾多頂尖的研究機構。IBM、貝爾實驗室相繼推出了實時的PC端孤立詞識別系統。上世紀80年代是語音識別快速發展的時期,其中兩個關鍵技術是隱馬爾科夫模型(HMM)的理論和應用趨于完善以及NGram語言模型的應用。此時語音識別開始從孤立詞識別系統向大詞匯量連續語音識別系統發展。例如,李開復研發的SPHINX系統,是基于統計學原理開發的第一個“非特定人連續語音識別系統”。其核心框架就是用隱馬爾科模型對語音的時序進行建模,而用高斯混合模型(GMM)對語音的觀察概率進行建模。基于GMM-HMM的語音識別框架在此后很長一段時間內一直是語音識別系統的主導框架。上世紀90年代是語音識別基本成熟的時期,主要進展是語音識別聲學模型的區分性訓練準則和模型自適應方法的提出。這個時期劍橋語音識別組推出的HTK工具包對于促進語音識別的發展起到了很大的推動作用。此后語音識別發展很緩慢,主流的框架GMM-HMM趨于穩定,但是識別效果離實用化還相差甚遠,語音識別的研究陷入了瓶頸。

  關鍵突破起始于2006年。這一年辛頓(Hinton)提出深度置信網絡(DBN),促使了深度神經網絡(Deep Neural Network,DNN)研究的復蘇,掀起了深度學習的熱潮。2009年,辛頓以及他的學生默罕默德(D. Mohamed)將深度神經網絡應用于語音的聲學建模,在小詞匯量連續語音識別數據庫TIMIT上獲得成功。2011年,微軟研究院俞棟、鄧力等發表深度神經網絡在語音識別上的應用文章,在大詞匯量連續語音識別任務上獲得突破。從此基于GMM-HMM的語音識別框架被打破,大量研究人員開始轉向基于DNN-HMM的語音識別系統的研究。

  2

  基于深度神經網絡的語音識別系統

  基于深度神經網絡的語音識別系統主要采用如圖1所示的框架。相比傳統的基于GMM-HMM的語音識別系統,其最大的改變是采用深度神經網絡替換GMM模型對語音的觀察概率進行建模。最初主流的深度神經網絡是最簡單的前饋型深度神經網絡(Feedforward Deep Neural Network,FDNN)。DNN相比GMM的優勢在于:1. 使用DNN估計HMM的狀態的后驗概率分布不需要對語音數據分布進行假設;2. DNN的輸入特征可以是多種特征的融合,包括離散或者連續的;3. DNN可以利用相鄰的語音幀所包含的結構信息

  語音識別系統最新實踐

  圖1 基于深度神經網絡的語音識別系統框架

非常好我支持^.^

(0) 0%

不好我反對

(0) 0%

      發表評論

      用戶評論
      評價:好評中評差評

      發表評論,獲取積分! 請遵守相關規定!

      ?
      主站蜘蛛池模板: 夜夜爽网站| 久久成人福利视频| 成人99| 高清国产亚洲va精品| 国产精品久久久久久久久| 国产精品久久国产三级国不卡顿| 痴女中文字幕在线视频| 99视频网址| 奇米影视欧美| 69japanese日本100| 国产h视频在线| 色视频免费版高清在线观看| 好硬好湿好爽再深一点h| 亚洲精品美女在线观看| 天堂中文在线观看| 欧美色图 亚洲| 国产精品15p| 天天爱天天做色综合| 国产免费小视频| 亚洲欧美日本视频| 亚洲国产成人最新精品资源| 日本黄色三级视频| 国产精品天天爽夜夜欢张柏芝| 天天综合五月天| 1024手机在线看永久免费| 老师啊灬啊灬用力啊快224视频| 五月婷婷六月婷婷| 美女污污网站| 亚洲午夜在线观看| 放荡女同老师和女同学生| 亚洲春色在线| 特级毛片免费视频观看| 久久久夜色精品国产噜噜| 午夜精品久久久久久影视riav| 国产精品天天看天天爽| 天天综合网网欲色| 色女人网| 成人区精品一区二区毛片不卡| 理论片午夜| 国产男女怕怕怕免费视频| 日韩理论电影2021第1页|