1.VS腳優異的抗負壓能力
現在的高功率變頻器和驅動器承載更大的負載電流。如下圖1 所示:由于功率回路里的寄生電感(主要由功率器件的封裝引線和PCB的走線產生的),電路中VS腳的電壓會從高壓母線電壓(S1通S2關時)變化到低于地的負壓(S1關閉時)。圖一右邊波形中的紅色部分就是VS腳在半橋感性負載電路中產生的瞬態負電壓。
這個瞬態負壓尖峰會引起驅動芯片工作出錯進而損壞功率器件,有時會直接損壞驅動芯片。這種負電壓尖峰在大電流和高速開關時(尤其在使用寬禁帶器件:碳化硅和氮化鎵時)變的越來越大。器件的耐負壓能力成了選擇高壓驅動芯片在這些應用領域里的關鍵因素。
在英飛凌的SOI技術中,芯片有源區和襯底之間是絕緣的,不存在像常規硅技術驅動芯片那樣的寄生三極管和二極管,所以不會出現上述的負VS電壓引起的問題。
英飛凌的SOI高壓驅動芯片有著非常高的耐負壓能力,VS腳可以承受300ns的負100 V的電壓。
2.極低的電平轉移電路損耗
電平轉移電路把低壓端的開關信號傳輸到高壓端,傳輸過程中消耗的能量決定了電平轉移電路的損耗。隨著開關頻率的增加,電平轉移電路的損耗所占整個驅動芯片損耗的比重越來越大。
英飛凌SOI高壓驅動芯片的電平轉移電路消耗的能量非常小。驅動芯片的超低損耗大大提高了高頻應用的設計靈活性,同時也提高了系統的效率,從而提升了系統的可靠性和產品的壽命。
圖2,相同封裝和同等驅動能力,不同技術的高壓驅動芯片的溫度測試對比圖(同樣測試條件和PCB板),英飛凌的SOI高壓驅動芯片比其它芯片的溫度低55.6°C.
3.芯片內部集成的自舉二極管
高壓驅動芯片的浮地端電路普遍使用自舉供電,這是一種簡單和低成本的供電方案。但是常規的硅技術的高壓驅動芯片必須外加自舉二極管,或使用芯片內部集成的低效自舉MOSFET和額外的內部控制電路實現自舉供電。
英飛凌的SOI驅動芯片內部集成了超快恢復自舉二極管,優異的反向恢復特性和小于40歐姆的動態電阻,大大拓寬了芯片的使用范圍,可以驅動更大容量的功率器件而不會過熱,從而簡化了電路設計,降低了系統成本。
圖3顯示了自舉供電電路,由自舉二極管和電容組成。自舉供電是電平轉移方式高壓驅動芯片浮地端電路的典型供電方式。
英飛凌SOI高壓驅動芯片一覽表
-
芯片
+關注
關注
456文章
50889瀏覽量
424241 -
集成電路
+關注
關注
5388文章
11562瀏覽量
362018
原文標題:英飛凌絕緣體上硅(SOI)高壓驅動芯片的三個優勢
文章出處:【微信號:yflgybdt,微信公眾號:英飛凌工業半導體】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論