在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

簡述SiC芯片市場的大爆發所產生的影響

lC49_半導體 ? 來源:djl ? 作者:Semiconductor Enginee ? 2019-08-30 09:08 ? 次閱讀

電動汽車推動了SiC功率半導體市場,但成本仍然是個問題。

隨著電動汽車以及其他系統的增長,碳化硅(SiC)功率半導體市場正在經歷需求的突然激增。

但需求也導致市場上基于SiC的器件供應緊張,促使一些供應商在棘手的晶圓尺寸過渡期間增加晶圓廠產能。一些SiC器件制造商正從4英寸晶圓過渡到6英寸晶圓。

SiC是一種基于硅和碳的復合半導體材料。在生產流程中,專門的SiC襯底被開發出來,然后在晶圓廠中進行加工,得到基于SiC的功率半導體。許多基于SiC的功率半導體和競爭技術都是專用晶體管,它們可以在高電壓下開關器件的電流。它們用于電力電子領域,可以實現系統中電力的轉換和控制。

SiC因其寬帶隙技術脫穎而出。與傳統硅基器件相比,SiC的擊穿場強是傳統硅基器件的10倍,導熱系數是傳統硅基器件的3倍,非常適合于高壓應用,如電源、太陽能逆變器、火車和風力渦輪機。另外,SiC還用于制造LED

最大的增長機會在汽車領域,尤其是電動汽車。基于SiC的功率半導體用于電動汽車的車載充電裝置,而這項技術正在進入系統的關鍵部分——牽引逆變器。 牽引逆變器為電動機提供牽引力,以推動車輛前進。

對于這一應用,特斯拉在一些車型中使用了SiC功率器件,而其他電動汽車制造商則在評估這項技術。Yole Développement的分析師Hong Lin表示:“當人們討論SiC功率器件時,汽車市場無疑是焦點。豐田和特斯拉等先驅企業的SiC活動給市場帶來了許多刺激和喧囂。SiC MOSFET在汽車市場具有潛力。但仍存在一些挑戰,比如成本、長期可靠性和模塊設計。”

據Yole稱,在汽車和其他市場的推動下,2017年SiC功率器件業務達到3.02億美元,較2016年的2.48億美元增長22%。Lin表示:“由于采用了SiC MOSFET模塊的特斯拉Model 3產能增長,在汽車行業的推動下,我們預計2018年會實現飛躍。”

據Yole稱,到2023年,SiC功率半導體市場預計將達到15億美元。SiC器件的供應商包括Fuji、英飛凌Littelfuse、三菱、安森半導體、意法半導體、Rohm、東芝和Wolfspeed。 Wolfspeed是Cree的一部分。X-Fab是SiC的唯一代工廠商。

制造SiC

電力電子技術在全球電力基礎設施中發揮著關鍵作用。這項技術用于工業電機驅動)、交通運輸(汽車,火車)、計算(電源)和可再生能源(太陽能、風能)。電力電子技術在系統中實現交流電和直流電(AC&DC)的轉換。

對于這些應用,行業使用的是各種功率半導體。一些功率半導體是專用晶體管,在系統中充當開關。它們允許電源在“開”狀態下流動,在“關”狀態下停止。

功率半導體是在成熟節點上制造的。這些器件旨在提高效率并最大限度地降低系統中的能量損失。通常,它們是根據電壓和其他規格來評定的,而不是根據工藝尺寸評定。

多年來,主流的功率半導體技術一直(現在仍然)是硅基,即功率MOSFET和絕緣柵雙極晶體管(IGBT)。功率MOSFET被認為是最便宜、最流行的器件,用于適配器、電源和其他產品。它們用于高達900伏的應用中。

在傳統的MOSFET器件中,源極和漏極位于器件的頂部。相比之下,功率MOSFET具有垂直結構,其中源極和漏極分別位于器件的相對側。垂直結構使器件能夠處理更高的電壓。

最主要的中端功率半導體器件是IGBT,它結合了MOSFET和雙極晶體管的特性。IGBT用于400伏~10千伏的應用。

問題在于,功率MOSFET和IGBT正在達到其理論極限,并且存在不必要的能量損失。器件因傳導和開關而產生能量損失。傳導損耗是由器件中的電阻引起的,而開關損耗是在開關狀態期間發生的。

Wolfspeed公司電力營銷和應用高級總監Guy Moxey表示:“從5伏到幾百伏,硅MOSFET一直都是一種很好的技術。當電壓達到600伏到900伏時,硅MOSFET很好,但它開始出現能量損失。IGBT是很好的舉重運動員,但它既不快速也不高效。”

這便是SiC的用武之地。基于氮化鎵(GaN)的功率半導體也正在出現。GaN和SiC都是寬帶隙技術。硅的帶隙為1.1 eV。 相比之下,SiC的帶隙為3.3 eV,GaN的帶隙為3.4 eV。

貿澤電子(Mouser Electronics)在一篇博客中表示:“電子帶隙是固體材料中價帶頂部和導帶底部之間的能量間隔。正是這種帶隙使半導體能夠根據需要開關電流,以實現特定的電氣功能。”

寬帶隙器件具有幾個優點。例如,電動車輛由電動機驅動器驅動,電動機驅動器傳統上使用功率MOSFET或IGBT。Wolfspeed公司的Moxey表示:“如果你用SiC替換掉原來的電動機驅動器,那么你的驅動器損耗會降低80%。這意味著在相同的續航里程內,你可以使用更小的電池。電池越小意味著成本越低。”

同時,基于SiC的功率半導體用于600伏~10千伏應用。Moxey表示:“600~1700伏電壓適用于大多數SiC應用。當電壓達到3.3~10千伏時,它非常適合。例如風力發電和小型電網。”

在電源領域,GaN用于30~600伏的應用。Moxey表示說:“GaN和SiC是互補技術,而非競爭技術。”

GaN和SiC器件都比硅快,但也更貴。Yole旗下System Plus Consulting部門設備主管Elena Barbarini表示:“目前,SiC MOSFET器件的每安培成本比同類IGBT高出五倍以上”

2002年,隨著SiC二極管的引入,出現了第一個基于SiC的器件,隨后在2011年推出了SIC功率MOSFET。與功率MOSFET類似,基于SiC的器件是垂直結構。

SiC功率MOSFET是基于SiC的功率開關晶體管。Rohm公司應用工程師Mitch Van Ochten解釋說:“二極管是一種向一個方向傳導電流并在相反方向阻擋電流的器件。”

無論如何,SiC功率半導體正在增長。Applied Materials公司戰略與技術營銷總監Mike Rosa表示:“硅在功率器件中發揮著重要作用。但當你談到更高的功率和更輕的重量時,制造商們關注的卻是像SiC這樣的材料”

基于SiC的器件在晶圓廠中生產,行業持續進行晶圓尺寸的過渡。Rosa表示:“4英寸或6英寸晶圓都可以使用SiC。整個行業都在拼命追逐8英寸晶圓。”

事實上,Cree已經完成從4英寸(100mm)晶圓到6英寸(150mm)晶圓的過渡。Rohm和其他公司正處于過渡階段。200mm晶圓上的SiC在一段時間內不會出現。

通常,當遷移到新的晶圓尺寸時,每個晶圓上的裸片數量將增加2.2倍。更大的晶圓尺寸可以降低整體生產成本。

在數字CMOS領域,芯片制造商幾年前便從4英寸過渡到6英寸。對SiC進行相同的過渡聽起來很簡單,但也存在一些挑戰。Lam Research戰略營銷高級總監David Haynes表示:“盡管在150mm晶圓上大規模生產SiC功率器件已經經過了近5年的驗證,但150毫米的高性能、低缺陷密度SiC襯底的可用性和成本仍然是采用的障礙。”

Haynes表示:“也就是說,隨著向150mm量產的過渡的實現,相關的成本節約將有助于在越來越多的應用中推動商業可行性。另一個例子是SiC MOSFET技術的路線圖。平面SiC MOSFET已經在商業應用中得到了一段時間的驗證,但是今天,對于溝槽結構的SiC MOSFET的開發和商業化得到了重大推動,與平面結構相比,它可以提供明顯更低的導通電阻。”

同時,在晶圓廠中,基于SiC的功率器件通常遵循與硅基芯片相同的工藝流程。 但也存在一些差異,例如SiC襯底的開發。

對于硅基芯片,工藝的第一步是開發原始硅晶圓。為此,將硅晶種放到坩堝中加熱。最后形成的主體被稱為硅錠,將其拉制并切成300mm及更小尺寸的硅晶圓。

然而,對于SiC而言,工藝是將SiC塊狀晶體被放入坩堝中加熱,將得到的錠料拉出并切成薄片。

多年來,SiC塊狀晶體一直被一種稱為微管的缺陷所困擾,微管是在晶體中貫穿的微米大小的孔洞。華威大學副教授Peter Gammon表示:“微管缺陷和其他會破壞器件操作的缺陷現在幾乎都消除了。材料供應商現在提供零微管產品。”

一旦SiC晶圓被開發出來,下一步就是形成SiC襯底。將裸晶圓插入沉積系統中,晶圓上會生長出SiC外延層,從而形成SiC襯底。然后,在晶圓廠中對SiC襯底進行加工,并使用檢測系統對缺陷進行檢測。SiC器件容易出現缺陷,尤其是隨著供應商轉向更大的晶圓尺寸。

KLA-Tencor公司 LS-SWIFT部門副總裁兼總經理Lena nicolades表示:“SiC存在很多缺陷。對于SiC,我們的檢測系統使用較短的波長。它能在襯底中找到間斷點。”

電動汽車中的SiC

與此同時,汽車行業是整個半導體行業中增長最快的領域。聯華電子業務發展副總裁Walter Ng說:“越來越多的客戶正在重新定義他們的產品組合,以適應物聯網和汽車市場。今年,我們與汽車相關的收入大幅增長。我們預計,在可預見的未來,汽車相關的收入仍將繼續增長。”

SiC在汽車領域也出現了增長,尤其是在電動汽車領域。電動汽車,包括純電動汽車和混合動力汽車,占今天全球汽車銷量的1%左右。據Frost&Sullivan稱,在中國和其他國家的推動下,電動汽車市場將從2018年的160萬輛增長到2019年的200萬輛。到2025年,市場預計將達到2500萬輛。

Lam公司的Haynes表示:“采用電動汽車和混合動力汽車肯定會成為現實。然而,在全球范圍內,采用的時間和采用率差異很大,并且與政府政策和消費者獲得適當價格的產品和充電基礎設施密切相關。毫無疑問,中國市場是電動汽車的主要增長引擎。”

在電動汽車中,系統有幾個領域,例如娛樂系統、車載充電器、牽引逆變器等。 牽引逆變器將電池的能量轉化給牽引電動機,從而推動車輛前進。

SiC正在進軍車載充電器、DC-DC轉換器和牽引逆變器。車載充電器通過電網為車輛充電。

簡述SiC芯片市場的大爆發所產生的影響

圖1:電動汽車中的電力電子技術 (來源:意法半導體)

DC-DC轉換器獲取電池電壓,然后將其降低到較低的電壓,用于控制窗戶、加熱器,以及其他功能。

器件制造商之間的一場大戰正發生在牽引逆變器領域,尤其是純電池電動汽車領域。一般來說,混合動力汽車正朝著48伏電池的方向發展。對于電力發明家而言,SiC對于混合動力汽車來說通常過于昂貴,盡管也有例外。

與混合動力汽車一樣,純電池電動汽車也由牽引逆變器組成。高壓母線將逆變器連接到電池和電機上。電池為汽車提供能量。推動汽車前進的電動機有三根線。

這三根線延伸到牽引逆變器,然后聯網到逆變器模塊內的六個開關。

每個開關實際上是一個功率半導體,在系統中充當電開關。對于開關,現有的技術是IGBT。因此牽引逆變器可以由六個IGBT組成,額定電壓為1200伏。

Rohm公司的Van Ochten表示:“實際上,它們是電開關。我們可以為這些電開關選擇技術,它們可以啟用和禁用各種電機繞組,并有效地使電機旋轉。用于這種功能的最流行的電子半導體開關稱為IGBT。超過90%的汽車制造商都在使用它們。它們是根據需要將電池電流轉換到電動機的最便宜的方式。”

然而,使用IGBT有一些權衡。Van Ochten表示:“IGBT可能是最新技術價格的三分之一,但它們的速度很慢。”

這就是業界瞄準SiC MOSFET的原因,SiC MOSFET比IGBT具有更快的切換速度。意法半導體寬帶隙和功率射頻業務部門主管Maurizio Ferrara表示:“SiC MOSFET還降低了開關損耗,同時降低了中低功率水平下的傳導損耗。它們的工作頻率是IGBT的四倍。由于更小的無源元件和更少的外部元件,因此可以減小重量、尺寸和成本。因此,與硅基解決方案相比,SiC MOSFET可將效率提高90%。”

所以,對于牽引逆變器而言,從IGBT轉向SiC MOSFET是有意義的。但這并不那么簡單,因為成本在等式中扮演著重要的角色。

然而,特斯拉已經開始嘗試冒險。據Yole稱,特斯拉正在Model 3中使用意法半導體生產的SiC MOSFET。Yole還補充說,特斯拉還使用其他供應商的產品。其他汽車制造商也在探索這項技術,不過出于成本考慮,大多數OEM都沒有加入這一行列。

不過,有幾種方法可以實現從IGBT到SiC MOSFET的轉變。據Rohm稱,有以下幾種選擇:

將IGBT留在系統中,但用SiC二極管替換硅二極管。

將IGBT和硅二極管全部用SiC MOSFET和SiC二極管替換。

在逆變器中,有六個IGBT,每個IGBT都有一個單獨的硅二極管。使用二極管有幾個原因。Rohm公司的Van Ochten表示:“IGBT無法承受反向電動勢和過高的電壓。因此,需要在每個IGBT上加一個二極管,以防止在關閉開關時破壞它。”

使系統更有效率的一種方法是替換掉硅二極管。Van Ochten表示:“提高牽引逆變器效率的第一步是將IGBT留下。然后用SiC二極管代替普通的硅二極管。SiC二極管具有更好的性能。這樣可以提高效率。”

最終的解決方案是用SiC二極管和SiC MOSFET取代IGBT和硅二極管。Wolfspeed公司的Moxey表示:“由于材料的價格,SiC比硅更貴。但是,如果你的開關速度提高了四、五倍,就可以降低磁性元件和電容器的成本。”

這一切將走向何方?英飛凌汽車部副總裁Shawn Slusser表示:“當我們研究不同的應用時,我們預計,充電站和車載充電器將成為首批采用SiC技術的應用。”

Slusser表示:“至于汽車應用,我們預計IGBT將在未來十年主導市場。SiC具有高效率、高功率密度的優點,但成本較高。這意味著縮小尺寸和縮小電池容量的優點需要彌補更高的成本。這就是為什么我們相信SiC將最先用于車載充電器,因為更高開關頻率下的SiC效率和更小的無源元件可以補償SiC器件的高成本。只要電池成本節省多于SiC器件增加的成本,SiC就將被廣泛應用于大型電池電動汽車的主逆變器應用領域。對于800伏系統的電動汽車,還有其他優點,例如更短的充電時間、更高的逆變器效率和更低的電纜成本。”

可以肯定的是,SiC正在升溫,電動汽車也在升溫。如果供應商能夠降低成本,那么SiC功率半導體似乎將成為主導者。但這說起來容易做起來難。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 電動汽車
    +關注

    關注

    156

    文章

    12143

    瀏覽量

    231811
  • 芯片
    +關注

    關注

    456

    文章

    51019

    瀏覽量

    425405
  • 驅動器
    +關注

    關注

    53

    文章

    8263

    瀏覽量

    146681
收藏 人收藏

    評論

    相關推薦

    車載AI芯片市場爆發,未來誰能憑實力拿下主流市場

    特斯拉、蔚來、小鵬、比亞迪等帶動的智能汽車市場爆發,也帶動了車載AI芯片市場的大幅度增長。一些提前布局車載AI芯片的企業,開始迎來了收獲期。
    的頭像 發表于 04-13 07:57 ?1w次閱讀

    2023年國產汽車芯片SIC進展報告

    芯片SiC
    電子發燒友網官方
    發布于 :2023年04月25日 17:38:23

    民用監控市場板塊運作緩慢 何時將爆發

    性多了、價格合適了,安裝使用方便了,就要產生井噴,只是現在還沒到時候,現在算是火山爆發前夕。評論:民用監控市場不同于其他類別的市場,其分布范圍廣泛,需求特點也各不相同,有著其獨特的
    發表于 07-31 09:53

    傳感器市場爆發,中國市場誰來牽頭?

    。 所以在市場爆發的前提下,誰能站出來帶頭革新,誰就能第一個吃到蛋糕,當然想要吃第一口蛋糕的要求就是必須要有這個實力,成本的提升在以中小廠商為主的中國,實施難度是非常大的。但是有舍才有得。 就簡單的拿
    發表于 05-12 15:35

    SiC功率元器件的開發背景和優點

    工作等SiC的特征帶來的優勢。通過與Si的比較來進行介紹。”低阻值”可以單純解釋為減少損耗,但阻值相同的話就可以縮小元件(芯片)的面積。應對大功率時,有時會使用將多個晶體管和二極管一體化的功率模塊
    發表于 11-29 14:35

    SiC-MOSFET有什么優點

    電導率調制,向漂移層內注入作為少數載流子的空穴,因此導通電阻比MOSFET還要小,但是同時由于少數載流子的積聚,在Turn-off時會產生尾電流,從而造成極大的開關損耗。SiC器件漂移層的阻抗比Si器件低
    發表于 04-09 04:58

    淺析SiC功率器件SiC SBD

    ,或者溫度越高,恢復時間和恢復電流就越大,從而損耗也越大。與此相反,SiC-SBD是不使用少數載流子進行電傳導的多數載流子器件(單極性器件),因此原理上不會發生少數載流子積聚的現象。由于只產生使結電容放電
    發表于 05-07 06:21

    SiC功率器件SiC-MOSFET的特點

    電導率調制,向漂移層內注入作為少數載流子的空穴,因此導通電阻比MOSFET還要小,但是同時由于少數載流子的積聚,在Turn-off時會產生尾電流,從而造成極大的開關損耗。SiC器件漂移層的阻抗比Si器件低
    發表于 05-07 06:21

    車用SiC元件討論

    模組,以解決社會問題,并克服歐洲在其已處于世界領先水平的細分市場以及汽車、航空電子、鐵路和國防領域面臨的技術挑戰。展示品所有技術開發和目標應用的講解和展示,都是使用含有本專案開發出來的SiC技術模組
    發表于 06-27 04:20

    GaN和SiC區別

    寄生效應過多,它們的性能可能會下降到硅器件的性能,并可能會導致電路故障。傳導EMI會伴隨SiC MOSFET產生的快速電壓和電流開關瞬變,內部和外部SiC寄生效應會受到這些開關瞬變的影響,并且是EMI
    發表于 08-12 09:42

    汽車市場增長 SiC功率器件市場正在崛起

    已投入超過3000億美元用于各類電動汽車(xEV)的開發,推動了xEV市場爆發。這與傳統內燃機汽車市場形成鮮明對比,后者正遭遇前所未有的增長放緩。xEV市場是硅(Si)功率器件的主要
    的頭像 發表于 07-22 16:53 ?4870次閱讀
    汽車<b class='flag-5'>市場</b>增長 <b class='flag-5'>SiC</b>功率器件<b class='flag-5'>市場</b>正在崛起

    針對產生SiC功率元器件中浪涌的對策

    只是由于SiC MOSFET的跨導比Si MOSFET的跨導小一個數量級以上,因此不會立即流過過大的直通電流。所以即使流過了直通電流,也具有足夠的冷卻能力,只要不超過MOSFET的Tj(max
    發表于 02-28 11:38 ?283次閱讀
    針對<b class='flag-5'>所</b><b class='flag-5'>產生</b>的<b class='flag-5'>SiC</b>功率元器件中浪涌的對策

    SiC市場供需之變與未來趨勢

    從行業趨勢看,SiC上車是大勢趨。盡管特斯拉曾在2023年3月的投資者大會上表示,將減少75%的SiC用量,一度引發SiC未來發展前景不明的猜測,但后續汽車
    發表于 01-24 11:29 ?923次閱讀
    <b class='flag-5'>SiC</b><b class='flag-5'>市場</b>供需之變與未來趨勢

    2025年SiC芯片市場大揭秘:中國降價,產業變革!

    在全球半導體產業快速迭代的背景下,碳化硅(SiC)作為一種新興的高性能半導體材料,正逐步成為推動新能源汽車、智能電網、高速通信等領域發展的關鍵力量。近年來,中國SiC芯片市場經歷了前所
    的頭像 發表于 09-09 10:46 ?1179次閱讀
    2025年<b class='flag-5'>SiC</b><b class='flag-5'>芯片</b><b class='flag-5'>市場</b>大揭秘:中國降價,產業變革!

    揭秘安森美在SiC市場的未來布局

    目前,SiC功率器件產品迎來了全面爆發,眾多廠商宣布入局或是推出車規級SiC MOSFET產品,尋求打進汽車供應鏈。2024年新能源汽車的競爭進入白熱化階段,國產SiC器件的入局,可能
    的頭像 發表于 11-15 10:35 ?344次閱讀
    主站蜘蛛池模板: 午夜色a大片在线观看免费| 55夜色66夜色国产精品站| 午夜手机福利视频| 午夜久久网| 手机看片福利视频| 青青伊人91久久福利精品| 欧美成人猛男性色生活| 国产午夜精品理论片| 在线看黄色的网站| 一区二区视频| 97人人揉人人捏人人添| 亚洲成人免费观看| 日韩免费网站| 久久综合狠狠综合久久综合88| good韩国理论在线三级| 狠狠干在线观看| 欧美精品高清在线xxxx| 亚洲二区视频| 一级特级片| 日本www网站| 国模吧在线视频| 美国一级毛片免费看成人| 久久好色| www.99在线| 手机看片神马午夜| 视频在线免费观看| 狠狠色噜噜狠狠狠狠91| 网站毛片| 精品国产一区二区三区国产馆| 91青草视频| 放荡女同老师和女同学生| 日韩精品一卡二卡三卡四卡2021 | 国产特黄一级毛片特黄| 91po狼人社在线观看| 老湿成人影院| 正在播放一区二区| 亚洲国产成人精彩精品| 噜噜啪啪| 天天干天天操天天干| 俺也操| 午夜理伦片免费|