作者:nash_
sqrt()函數(shù),是絕大部分語(yǔ)言支持的常用函數(shù),它實(shí)現(xiàn)的是開(kāi)方運(yùn)算;開(kāi)方運(yùn)算最早是在我國(guó)魏晉時(shí)數(shù)學(xué)家劉徽所著的《九章算術(shù)》被提及。今天寫了幾個(gè)函數(shù)加上國(guó)外大神的幾個(gè)神級(jí)程序帶大家領(lǐng)略sqrt的神奇之處。
1、古人算法(暴力法)
原理:從0開(kāi)始0.00001,000002...一個(gè)一個(gè)試,直到找到x的平方根,代碼如下:
publicclassAPIsqrt{
staticdoublebaoliSqrt(doublex){
finaldouble_JINGDU=1e-6;
doublei;
for(i=0;Math.abs(x-i*i)>_JINGDU;i+=_JINGDU)
;
returni;
}
publicstaticvoidmain(String[]args){
doublex=3;
doubleroot=baoliSqrt(x);
System.out.println(root);
}
測(cè)試結(jié)果:
1、7320509999476947
2、牛頓迭代法
計(jì)算機(jī)科班出身的童鞋可能首先會(huì)想到的是《數(shù)值分析》中的牛頓迭代法求平方根。原理是:隨意選一個(gè)數(shù)比如說(shuō)8,要求根號(hào)3,我們可以這么算:
(8 + 3/8) = 4.1875
(4.1875 + 3/4.1875) = 2.4519
(2.4519 + 3/2.4519) = 1.837
(1.837 + 3/1.837) = 1.735
做了4步基本算出了近似值了,這種迭代的方式就是傳說(shuō)中的牛頓迭代法了,代碼如下:
publicclassAPIsqrt{
staticdoublenewtonSqrt(doublex){
if(x0){
System.out.println("負(fù)數(shù)沒(méi)事開(kāi)什么方");
return-1;
}
if(x==0)
return0;
double_avg=x;
doublelast_avg=Double.MAX_VALUE;
finaldouble_JINGDU=1e-6;
while(Math.abs(_avg-last_avg)>_JINGDU){
last_avg=_avg;
_avg=(_avg+x/_avg)/2;
}
return_avg;
}
publicstaticvoidmain(String[]args){
doublex=3;
doubleroot=newtonSqrt(x);
System.out.println(root);
}
}
測(cè)試結(jié)果:
17320508075688772
3、暴力-牛頓綜合法
原理:還是以根號(hào)3為例,先用暴力法講根號(hào)3逼近到1.7,然后再利用上述的牛頓迭代法。雖然沒(méi)有用牛頓迭代好,但是也為我們提供一種思路。代碼如下:
publicclassAPIsqrt{
staticdoublebaoliAndNewTonSqrt(doublex){
if(x0){
System.out.println("負(fù)數(shù)沒(méi)事開(kāi)什么方");
return-1;
}
if(x==0)
return0;
doublei=0;
double_avg;
doublelast_avg=Double.MAX_VALUE;
for(i=0;i*i0.1);
_avg=i;
finaldouble_JINGDU=1e-6;
while(Math.abs(_avg-last_avg)>_JINGDU){
last_avg=_avg;
_avg=(_avg+x/_avg)/2;
}
return_avg;
}
publicstaticvoidmain(String[]args){
doublex=3;
doubleroot=baoliAndNewTonSqrt(x);
System.out.println(root);
}
}
測(cè)試結(jié)果:
1、7320508075689423
4、二分開(kāi)方法
原理:還是以3舉例:
(0+3)/2 = 1.5, 1.5^2 = 2.25, 2.25 < 3;
(1.5+3)/2 = 2.25, 2.25^2 = 5.0625, 5.0625 > 3;
(1.5+2.25)/2 = 1.875, 1.875^2 = 3.515625; 3.515625>3;
直到前后兩次平均值只差小于自定義精度為止,代碼如下:
publicclassAPIsqrt{
staticdoubleerfenSqrt(doublex){
if(x0){
System.out.println("負(fù)數(shù)沒(méi)事開(kāi)什么方");
return-1;
}
if(x==0)
return0;
finaldouble_JINGDU=1e-6;
double_low=0;
double_high=x;
double_mid=Double.MAX_VALUE;
doublelast_mid=Double.MIN_VALUE;
while(Math.abs(_mid-last_mid)>_JINGDU){
last_mid=_mid;
_mid=(_low+_high)/2;
if(_mid*_mid>x)
_high=_mid;
if(_mid*_midreturn_mid;
}
publicstaticvoidmain(String[]args){
doublex=3;
doubleroot=erfenSqrt(x);
System.out.println(root);
}
}
測(cè)試結(jié)果:
1、732051134109497
5、計(jì)算 (int)(sqrt(x))算法
PS:此算法非博主所寫
原理:空間換時(shí)間,細(xì)節(jié)請(qǐng)大家自行探究,代碼如下:
publicclassAPIsqrt2{
finalstaticint[]table={0,16,22,27,32,35,39,42,45,48,50,53,
55,57,59,61,64,65,67,69,71,73,75,76,78,80,81,83,84,
86,87,89,90,91,93,94,96,97,98,99,101,102,103,104,
106,107,108,109,110,112,113,114,115,116,117,118,119,
120,121,122,123,124,125,126,128,128,129,130,131,132,
133,134,135,136,137,138,139,140,141,142,143,144,144,
145,146,147,148,149,150,150,151,152,153,154,155,155,
156,157,158,159,160,160,161,162,163,163,164,165,166,
167,167,168,169,170,170,171,172,173,173,174,175,176,
176,177,178,178,179,180,181,181,182,183,183,184,185,
185,186,187,187,188,189,189,190,191,192,192,193,193,
194,195,195,196,197,197,198,199,199,200,201,201,202,
203,203,204,204,205,206,206,207,208,208,209,209,210,
211,211,212,212,213,214,214,215,215,216,217,217,218,
218,219,219,220,221,221,222,222,223,224,224,225,225,
226,226,227,227,228,229,229,230,230,231,231,232,232,
233,234,234,235,235,236,236,237,237,238,238,239,240,
240,241,241,242,242,243,243,244,244,245,245,246,246,
247,247,248,248,249,249,250,250,251,251,252,252,253,
253,254,254,255};
/**
*Afasterreplacementfor(int)(java.lang.Math.sqrt(x)).Completely
*accurateforx2147483648(i.e.2^31)...
*/
staticintsqrt(intx){
intxn;
if(x>=0x10000){
if(x>=0x1000000){
if(x>=0x10000000){
if(x>=0x40000000){
xn=table[x>>24]<8;
}else{
xn=table[x>>22]<7;
}
}else{
if(x>=0x4000000){
xn=table[x>>20]<6;
}else{
xn=table[x>>18]<5;
}
}
xn=(xn+1+(x/xn))>>1;
xn=(xn+1+(x/xn))>>1;
return((xn*xn)>x)?--xn:xn;
}else{
if(x>=0x100000){
if(x>=0x400000){
xn=table[x>>16]<4;
}else{
xn=table[x>>14]<3;
}
}else{
if(x>=0x40000){
xn=table[x>>12]<2;
}else{
xn=table[x>>10]<1;
}
}
xn=(xn+1+(x/xn))>>1;
return((xn*xn)>x)?--xn:xn;
}
}else{
if(x>=0x100){
if(x>=0x1000){
if(x>=0x4000){
xn=(table[x>>8])+1;
}else{
xn=(table[x>>6]>>1)+1;
}
}else{
if(x>=0x400){
xn=(table[x>>4]>>2)+1;
}else{
xn=(table[x>>2]>>3)+1;
}
}
return((xn*xn)>x)?--xn:xn;
}else{
if(x>=0){
returntable[x]>>4;
}
}
}
return-1;
}
publicstaticvoidmain(String[]args){
System.out.println(sqrt(65));
}
}
測(cè)試結(jié)果:8
6、最快的sqrt算法
PS:此算法非博主所寫
這個(gè)算法很有名,大家可能也見(jiàn)過(guò),作者是開(kāi)發(fā)游戲的,圖形算法中經(jīng)常用到sqrt,作者才寫了一個(gè)神級(jí)算法,和他那神秘的0x5f3759df,代碼如下
#include
floatInvSqrt(floatx)
{
floatxhalf=0.5f*x;
inti=*(int*)&x;//getbitsforfloatingVALUE
i=0x5f375a86-(i>>1);//givesinitialguessy0
x=*(float*)&i;//convertbitsBACKtofloat
x=x*(1.5f-xhalf*x*x);//Newtonstep,repeatingincreasesaccuracy
returnx;
}
intmain()
{
printf("%lf",1/InvSqrt(3));
return0;
}
測(cè)試結(jié)果:
感興趣的朋友可以參考http://wenku.baidu.com/view/a0174fa20029bd64783e2cc0.html 是作者解釋這個(gè)算法的14頁(yè)論文《Fast Inverse Square Root》
7、一個(gè)與算法6相似的算法
PS:此算法非博主所寫
代碼如下:
#include
floatSquareRootFloat(floatnumber){
longi;
floatx,y;
constfloatf=1.5F;
x=number*0.5F;
y=number;
i=*(long*)&y;
i=0x5f3759df-(i>>1);
y=*(float*)&i;
y=y*(f-(x*y*y));
y=y*(f-(x*y*y));
returnnumber*y;
}
intmain()
{
printf("%f",SquareRootFloat(3));
return0;
}
測(cè)試結(jié)果:
-
算法
+關(guān)注
關(guān)注
23文章
4615瀏覽量
92991 -
函數(shù)
+關(guān)注
關(guān)注
3文章
4333瀏覽量
62697
原文標(biāo)題:開(kāi)平方的 7 種算法
文章出處:【微信號(hào):TheAlgorithm,微信公眾號(hào):算法與數(shù)據(jù)結(jié)構(gòu)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論