在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

基于AI視覺處理的更多新應用

汽車玩家 ? 來源:電子創新網 ? 作者:Andrew Grant ? 2020-01-31 09:38 ? 次閱讀

在對人工智能AI)而非提高像素的需求推動下,特別是在由計算機視覺和數據驅動的決策制定方面,GPU(圖形處理單元)領域已出現一場革命。神經網絡的到來已使視覺處理成為現代世界的關鍵因素。因此,機器人處理操作、智能監控攝像頭以及汽車高級駕駛輔助系統(ADAS)等相關行業都發生了變化——隨著這類技術的全面涌現,未來還將出現更多新的應用。

換句話說,專業人員需要考慮現在以及未來幾年的市場情況。隨著AI方面的開發繼續取得突破性進展及其投資量超過幾乎所有其他行業,AI對我們所做一切產生影響只是時間問題。 想想自從第一款智能手機推出以來,移動設備上已增加大量新的應用,從而打開了種種基于位置的服務、社交互動、商業以及娛樂。AI有可能開啟新的應用,并使現有應用得到發展,使之大幅改進,而為用戶提供更好的服務。

云端作用

AI視覺處理已從數據中心迅速發展到邊緣,最新的專用集成電路ASIC)和片上系統(SoC)IP正在圍繞一個主題發展,即從視覺信息的預處理,到傳統的計算機視覺算法,然后再用神經網絡進行邊緣推理,產生對象檢測、識別以及適當的動作。

AI這個術語是包括計算機視覺深度學習在內的多種機器學習的總稱。這些網絡的設計旨在使用數字等效物和感知器來模擬人腦的神經元和突觸,它們通常需要經過訓練,才能識別視覺等數據中的模式,然后當遇到新的數據時,就可以從中推斷出數據可能的含義。盡管推理通常是在本地使用GPU或專用神經網絡加速器(NNA)IP實現,但訓練則通常是在數據中心的計算機上通過GPU來完成——這類處理器非常適合處理并行流水線任務。

在過去十年,由于可負擔計算能力的增加,以及卷積神經網絡(CNN)及其所用傳感器的發展,視覺處理一直在以指數級的速率進步。具體而言,若能根據傳感器、數據集和SLAM(同時定位與映射)算法輸入去“了解”世界并對其“開發出”表征模型,那么系統就可以開始掌握周圍環境及其在空間中的位置,并做出預測和采取行動。在云端訓練出的高級系統現在能夠顯著加快推理速度,這樣就可以以支持實時決策的速度來完成對象識別。自動駕駛汽車中的嵌入式系統具有多個傳感器,這樣的系統可以識別其他車輛,區分道路與人行道以及行人與動物。然后,它們就可以開始對行人是否會即將進入公路進行預測。

值得注意的是,這種高級推理傳統上是在云端執行,而現在正轉向在邊緣設備上運行,即在本地使用一個1到2mm2的嵌入式處理器芯片,而以極佳的性能對網絡層進行加速。也就是說,現在可以將強大的AI計算內置到非常小的傳感器、電子控制單元(ECU)和物聯網IoT)設備當中。

隨著AI越來越靠近邊緣并進入到傳感器、攝像頭和移動設備等設備中,它不僅消除了對基于云端推理架構的需求,而且將分析轉移到設備本身,消除了處理延遲,減少了數據傳輸和帶寬,同時可以增加安全性。強大的CNN可以通過量化和適應部署在小型邊緣設備中,并且當推理可以在小到大頭針針頭大小的芯片上運行時,這些設備就可以對大量的市場產生影響,例如安全、零售、工廠、家庭和汽車,無處不在。

神經網絡正在成為異構系統中的重要組成部分,涉及GPU和NNA的組合,它們分別可以做自己最擅長的事情并相互補充。

CPU、GPU還是NNA?

由于CPU或GPU可提供的現成計算能力大幅增加,神經網絡已變得非常普遍。然而,AI運算涉及到高度密集型的計算,這也就解釋了為何當談到邊緣設備時,它們難以實現令人滿意的性能——專用硬件解決方案則更為可取。例如,如果我們對典型的移動CPU以“1倍”來衡量其在運行神經網絡時的性能,那么GPU可將這個速度加速到大約12倍。但是,在專用的神經網絡加速器上,這些運算的運行速度可以快100倍(對于支持的層),如果運行在較低的位深度,例如4位,則可以快200倍。

這種方法使用定點量化數據類型來最小化模型的大小和所需的帶寬。無損壓縮進一步提高了效率。此外,一些NNA硬件核心IP支持可變位深度,這樣就可以逐層調整權重,實現最大的部署模型精度,同時最小化模型大小,從而減少內存帶寬和功耗。總的來說,這樣可以實現非常高效的性能并滿足低功耗要求。小型(約1 mm2)NNA出色的功率效率,甚至可以使設備以電池或基于太陽能或風能收集到的能量而運行。

用例1:圖像預處理

將GPU和NNA結合使用的高級方法,可實現用GPU對魚眼鏡頭圖像(例如廣角/魚眼鏡頭)進行去扭曲處理,然后將其作為輸入送到NNA,再運行SSD(單鏡頭檢測)算法而在輸入的去扭曲圖像上進行對象檢測(圖1)。這種方法已經得到實際使用,例如安防監控,或者將它用到需要用智能攝像頭或安裝在頭頂上的攝像頭來捕獲巨大視野的場景,或者用它來減少鏡頭失真。

基于AI視覺處理的更多新應用

圖1:預處理案例。

用例2:兩級對象檢測

然而,對于需要中間處理的網絡,例如選擇已訓練的感興趣區域或人群中的人臉,則可以采用諸如Faster R-CNN的兩級對象檢測網絡實現(圖2)。另一個可能的例子是將神經網絡鏈接在一起,即將一個網絡的輸出作為另一個網絡的輸入,其中包含了預處理、中間處理和后處理。處理路徑中間的非神經網絡運算可以根據適用情況而在GPU或CPU上進行處理,而可加速的層則可以在NNA上運行。

圖2:兩級對象檢測。

智慧城市、智能工廠和自動駕駛汽車中的AI處理

如果能將GPU和NNA組合到同一芯片上,則有機會充分利用這兩個領域,而將圖形視覺計算處理與神經網絡相結合,這通常會使用共享內存來減少帶寬和外部數據傳輸。

智慧城市

智慧城市與基礎設施有關(圖3)。在智慧城市里,傳感器將數據轉發回云端的“大腦”,通過監控交通流量來平穩地引導交通,從而提高道路效率,而車輛依靠這種智能基礎設施來讓駕駛員了解即將到來的交通狀況。因此,車與燈柱,交通信號燈和街道標志進行交互,這可能會讓人覺得不可思議;未來,我們的車會一直做這樣的事情。因此,我們將看到越來越多的車對車(V2V)和車對基礎設施(V2X)進行通信,以及智能邊緣傳感器“所見”數據的交互,及其如何作為有用信息進行傳遞。

圖3:智慧城市場景。

V2X將會成為一項基本要求——這個領域將使用AIoT(在物聯網中結合使用人工智能)并將采用數萬億個傳感器。AIoT將會支持這種車對基礎設施的通信,也就是說它們之間會進行多方面的信息交換,確保車輛能根據實時預測的信息做出明智的選擇。例如,要是人類管理員疏忽,忘了對高速公路標志上的過時信息更新,那將多么令人沮喪?或者,要是能知道提前下高速能避免繞遠路或排長隊,那豈不是更好?

目前,衛星導航系統依靠眾包數據來實現這一目標,但使用實時信息,可以使這個過程實現自動化并減少獲取數據的延遲。

汽車電子:自動駕駛汽車

自動駕駛汽車上裝有多個攝像頭,用來實現計算機視覺、對象識別、車道警告和駕駛員監控,以及其他傳感器(例如,熱成像、RADAR和LiDAR)而實現傳感器融合。在邊緣端處理數據,可以最大程度地降低汽車收發數據所需的帶寬,并避免分析的延遲。在有連接盲點或延遲非常嚴重的時候(例如以70mph以上的速度行駛),邊緣處理對能否挽救生命起到決定性作用。

此外,人工智能和路徑規劃可以識別和預測是否有小孩會走到公路上,從而讓車輛預測和減速,以便采取規避行動。在更簡單的層面上,自動代客泊車可以使駕駛員省去尋找停車位的負擔。

再者,邊緣傳感器可以跟蹤水、廢物、能源和環境污染(進而對流量改道而減少對特定地區的污染),以及使家庭和工作場所變得更安全和智能。

在智慧城市,AIoT將使更智能的邊緣設備不僅是數據生成器(傳感器),而且是數據聚合器,數據交換和數據驅動的決策“大腦”。對于城市中的汽車而言,這意味著可以通過街道基礎設施(V2X)和其他車輛(V2V)不斷對汽車更新信息來分散交通堵塞或完全消除堵塞,共享數據也可更好地對路線規劃和行車安全進行決策,并為救護車通行清理道路。

未來工作

在工作場所,以往“不通情達理”的工業機器人和自動駕駛車輛將變得可“了解”它們周圍的環境和人類的存在,從而使未來的工廠變得更加安全,例如,如果有人進入到機器人的工作范圍,它就能立即了解到將發生的事情并進入到安全模式,從而提高安全性。雖然工廠和工作場所正采用機器學習來徹底改變任務學習,但我們仍然需要保留在必要時允許人類進行介入和干預的權利。我們正在進入可 “教授”機器人做特定任務的階段,例如讓它們做弧形運動或者在做某項事時實現可接受的運動范圍。

同樣,我們將擁有智能便利店,顧客在此可以方便地選擇零售商品,例如維生素飲料,然后當他離開商店時,商店就會自動將款項從其帳戶扣除,并更新其忠誠度積分,同時對貨架進行補充。所有這一切都是依靠傳感器和攝像頭的動作實現,而沒有任何的人類互動。

本文小結

人工智能正在推動第四次工業革命。我們所生活的時代激動人心,我們幾乎每天都能看到有進步發生。業界對圖形和人工智能的投資也正在以指數級的速度擴大,并正在通過持續創新來開發新的用例。計算機和機器視覺的這些發展引人入勝,我們可以通過傳感器、邊緣設備和先進的高性能IP來為我們的世界增添智能。使用專用芯片IP進行神經網絡加速正在創造“智能邊緣”,我們正看到新的“視覺技術”部署在此,從而改變我們的世界。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • cpu
    cpu
    +關注

    關注

    68

    文章

    10898

    瀏覽量

    212569
  • AI
    AI
    +關注

    關注

    87

    文章

    31399

    瀏覽量

    269805
  • 深度學習
    +關注

    關注

    73

    文章

    5511

    瀏覽量

    121388
收藏 人收藏

    評論

    相關推薦

    基于瑞薩RZ/V2H AI處理器的解決方案:高性能視覺AI系統

    RZ/V2H嵌入式AI處理器,采用瑞薩最新的DRP-AI3技術,可提供高達8TOPS(Dense模型)/80TOPS(sparse模型)的AI推理能力,以及10 TOPS/W的高能效
    發表于 07-02 18:36 ?562次閱讀
    基于瑞薩RZ/V2H <b class='flag-5'>AI</b>微<b class='flag-5'>處理</b>器的解決方案:高性能<b class='flag-5'>視覺</b><b class='flag-5'>AI</b>系統

    安富利讓視覺AI應用開發化繁為簡

    邊緣設備中的視覺AI應用一般包括AI推理以及非AI的預處理和后處理功能,而所有這些功能都需要相應
    發表于 07-30 16:41 ?2014次閱讀
    安富利讓<b class='flag-5'>視覺</b><b class='flag-5'>AI</b>應用開發化繁為簡

    全球首款動態視覺專用AI處理器 打破傳統靜態視覺處理限制

    日前,瑞士高科技類腦芯片公司aiCTX發布了全球首款純基于事件驅動運算的動態視覺AI處理器DynapCNN,
    的頭像 發表于 04-26 15:05 ?5921次閱讀

    NI Vision Builder for AI中文圖像處理教程-石鑫華視覺

    藍本。NI Vision Builder for AI中文在線圖像處理教程由石鑫華視覺網http://shixinhua.com及石鑫華本人擁有版權。VBAI歡迎界面:圖1-1 VBAI歡迎界面在歡迎
    發表于 10-24 14:52

    肇觀電子發布世界領先AI視覺處理芯片N171

    `全球人工智能技術和計算機視覺技術領跑者,肇觀電子(NextVPU),日前正式發布世界領先AI視覺處理器芯片N171。 N171作為肇觀電子 N1系列的旗艦芯片,在多項參數上刷新世界
    發表于 08-31 14:32

    【新品發售】Taurus & Pegasus AI計算機視覺基礎開發套件

    Hi3516DV300和Pegasus Hi3861V100芯片設計。Taurus套件是AI視覺處理單元,可實現圖像編解碼顯示的基礎功能,如圖像采集、多路編碼、音視頻存儲傳輸、音視頻顯示回放等應用場景;可通過SVP
    發表于 03-31 11:52

    AI視覺檢測在工業領域的應用

    隨著制造業的智能化、自動化程度越來越高,AI視覺檢測系統已經成為一種重要的智能制造設備,它能夠大幅提高生產線上的檢測能力和效率。 一、AI視覺檢測系統的作用 工業
    發表于 06-15 16:21

    為高級圖像處理和分析部署AI視覺套件

      e-con Systems 與 Qualcomm 合作推出的全新 qSmartAI80_CUQ610 AI 視覺套件為廣泛的視覺應用提供了完整的 AI
    的頭像 發表于 05-31 09:24 ?1921次閱讀

    部署AI視覺套件以進行高級圖像處理和分析

      人工智能(AI)和機器學習(ML)應用的關鍵方面之一是圖像處理和計算機視覺。隨著人工智能和ML應用程序的復雜性和需求的增加,開發用于圖像處理
    的頭像 發表于 10-19 10:02 ?810次閱讀

    解決方案 | 視覺AI網關解決方案

    視覺AI也稱為計算機視覺,旨在訓練計算機復制人類視覺系統,讓數字設備(如人臉檢測器、QR碼掃描儀)能夠像人類一樣識別和處理圖像、視頻中的物體
    的頭像 發表于 12-08 18:25 ?1006次閱讀

    新一代面向邊緣應用的AI視覺處理

    最近,筆者與Ambarella的AIoT高級總監Jerome Gigot進行了交流,該公司專門為邊緣應用程序創建AI視覺處理器。
    發表于 05-08 16:03 ?666次閱讀
    新一代面向邊緣應用的<b class='flag-5'>AI</b><b class='flag-5'>視覺</b><b class='flag-5'>處理</b>器

    工業視覺AI機器人—機器視覺質檢

    工業視覺AI機器人,AI+3D視覺解決柔性自動化難題,為制造業帶來顛覆性技術變革。
    的頭像 發表于 05-31 10:42 ?1310次閱讀

    芯原的ISP滿足NU4100視覺AI處理器目標市場的廣泛需求

    處理器中采用了芯原低延遲、低功耗的雙通道圖像信號處理器 (ISP) IP,為機器人、增強現實 (AR)/虛擬現實 (VR)/混合現實 (MR)、無人機等多種應用領域帶來了優秀的圖像和視覺體驗。 銀牛NU4100是一款高度集成的單
    的頭像 發表于 09-21 10:50 ?900次閱讀

    銀牛視覺AI處理器采用芯原創新的ISP IP

    芯原股份今日宣布3D視覺與人工智能(AI)解決方案提供商銀牛微電子(簡稱“銀牛”)在其量產的NU4100視覺AI處理器中采用了芯原低延遲、低
    的頭像 發表于 09-21 11:12 ?836次閱讀

    銀牛微電子視覺AI處理器采用芯原創新ISP IP

    2023年9月21日,中國上海——芯原股份 (芯原,股票代碼:688521.SH) 今日宣布3D視覺與人工智能(AI)解決方案提供商銀牛微電子 (簡稱“銀牛”) 在其量產的NU4100視覺AI
    發表于 09-21 14:08 ?706次閱讀
    主站蜘蛛池模板: 午夜黄视频| 亚洲xx站| 国产69精品久久久久9999| 在线啪| 黄网站视频在线观看| 被公侵犯肉体中文字幕一区二区 | 亚洲宅男天堂a在线| 亚洲欧美婷婷| 三级视频欧美| 男女爱爱是免费看| 亚洲免费在线观看视频| 2019天天操| 国产成都一二三四区| 1000部啪啪勿入十八免费| 五月婷婷天| 人人干综合| 2020年亚洲天天爽天天噜| 亚洲永久网站| 影院成人区精品一区二区婷婷丽春院影视| 亚洲精品福利网站| 日本亚洲成人| 国产大乳喷奶水在线看| 天天色天天| 亚洲五月六月丁香激情| 老师办公室高h文小说| 天天色图片| 久久影院朴妮唛| 又粗又长又大又黄的日本视频 | 高清性欧美xxx| 国内一区二区| 日韩三级毛片| 国产va| 美人岛福利| 亚洲高清一区二区三区四区| 亚洲欧洲日韩综合| 女人被免费网站视频在线| www四虎影院| 国产精品美女久久久久网| 久久精品亚洲热综合一本奇米| 色在线网| 奇米影色777四色在线首页|