很多讀者可能分不清楚 CPU、GPU 和 TPU 之間的區別,因此 Google Cloud 將在這篇博客中簡要介紹它們之間的區別,并討論為什么 TPU 能加速深度學習。
TPU
張量處理單元(TPU)是一種定制化的 ASIC 芯片,它由谷歌從頭設計,并專門用于機器學習工作負載。TPU 為谷歌的主要產品提供了計算支持,包括翻譯、照片、搜索助理和 Gmail 等。Cloud TPU 將 TPU 作為可擴展的云計算資源,并為所有在 Google Cloud 上運行尖端 ML 模型的開發者與數據科學家提供計算資源。在 Google Next’18 中,我們宣布 TPU v2 現在已經得到用戶的廣泛使用,包括那些免費試用用戶,而 TPU v3 目前已經發布了內部測試版。
TPU
第三代 Cloud TPU
如上為 tpudemo.com 截圖,該網站 PPT 解釋了 TPU 的特性與定義。在本文中,我們將關注 TPU 某些特定的屬性。
神經網絡如何運算
在我們對比 CPU、GPU 和 TPU 之前,我們可以先了解到底機器學習或神經網絡需要什么樣的計算。如下所示,假設我們使用單層神經網絡識別手寫數字。
TPU
如果圖像為 28×28 像素的灰度圖,那么它可以轉化為包含 784 個元素的向量。神經元會接收所有 784 個值,并將它們與參數值(上圖紅線)相乘,因此才能識別為「8」。其中參數值的作用類似于用「濾波器」從數據中抽取特征,因而能計算輸入圖像與「8」之間的相似性:
然后,TPU 從內存加載數據。當每個乘法被執行后,其結果將被傳遞到下一個乘法器,同時執行加法。因此結果將是所有數據和參數乘積的和。在大量計算和數據傳遞的整個過程中,不需要執行任何的內存訪問。
這就是為什么 TPU 可以在神經網絡運算上達到高計算吞吐量,同時能耗和物理空間都很小。
好處:成本降低至 1/5
因此使用 TPU 架構的好處就是:降低成本。以下是截至 2018 年 8 月(寫這篇文章的時候)Cloud TPU v2 的使用價格。
在 DAWNBench 比賽于 2018 年 4 月結束的時候,非 TPU 處理器的最低訓練成本是 72.40 美元(使用現場實例訓練 ResNet-50 達到 93% 準確率)。而使用 Cloud TPU v2 搶占式計價,你可以在 12.87 美元的價格完成相同的訓練結果。這僅相當于非 TPU 的不到 1/5 的成本。這正是神經網絡領域特定架構的威力之所在。
-
cpu
+關注
關注
68文章
10863瀏覽量
211767 -
gpu
+關注
關注
28文章
4740瀏覽量
128949 -
TPU
+關注
關注
0文章
141瀏覽量
20728
發布評論請先 登錄
相關推薦
評論