在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

硫基電解液能夠提升NCM/石墨電池的循環性能

獨愛72H ? 來源:新能源Leader ? 作者:新能源Leader ? 2020-04-20 17:20 ? 次閱讀

(文章來源:新能源Leader)

隨著新能源汽車續航里程的不斷增加,能量密度更高的三元材料逐漸取代了磷酸鐵鋰材料,在為電動汽車帶來更好的續航里程的同時,三元材料在循環過程中也存在過渡金屬元素溶解、應力累積和顆粒表面晶體結構相變等問題,導致三元體系的鋰離子電池在循環壽命上相比于磷酸鐵鋰體系電池有著不少的差距。

電解液是改善三元體系鋰離子電池循環性能的有效方法,法國巴黎第九大學的BenjaminFlamme(第一作者)和Jolantawiatowska(通訊作者)、AlexandreChagnes(通訊作者)等人開發了一種基于3-甲氧基四氫噻吩1,1-二氧化物(MESL)溶劑和LiTFSI鋰鹽的電解液體系,該電解液體系使得NCM111/石墨電池在4.5V截止電壓下仍然能夠保持良好的循環穩定性。

作者之前的研究表明硫基溶劑具有良好的熱穩定性和抗氧化性能,但是它們通常粘度較高,導致電解液的電導率較低。為了降低硫基電解液的粘度,作者合成了MESL溶劑。電解液的配制時通過將LiTFSI溶劑到MESL溶劑當中,獲得1mol/L的溶液,并向其中加入FEC。

硫基電解液能夠提升NCM/石墨電池的循環性能

在電解液中添加FEC的主要目的是提升負極的庫倫效率和循環性能,向MESL+LiTFSI電解液中添加1%(體積分數)的MESL后,石墨負極的循環性能和庫倫效率。除了首次充放電因為電解液的分解導致庫倫效率有所降低外,在隨后的循環中電池的庫倫效率都接近100%,表明電解液在負極表面形成的SEI膜很好的抑制了電解液的持續分解。但是石墨負極的容量僅為90mAh/g左右,遠遠低于石墨材料在碳酸酯類電解液中300mAh/g以上的容量。

負極形成的SEI膜質量較差,導致阻抗較高;硫基溶劑粘度過高,因此難以滲入到石墨負極的孔隙之中,因此導致活性物質發揮不充分。

當FEC的添加量為1%時,NCM材料的首次充放電容量為80mAh/g,每次循環平均損失3%的容量,前五次循環的庫倫效率僅為85%-90%,5-25次循環的庫倫效率也僅為95%左右。而當我們將FEC的添加量提高到5%后,電池的庫倫效率大幅提升,并且平均每次循環的容量損失僅為0.7%。

在40℃循環時NCM電池的庫倫效率逐漸降低,這主要是因為電解液在正極表面的氧化導致的,而當溫度降低到常溫后,電解液在正極材料表面的氧化作用顯著降低,因此電池的庫倫效率始終維持在較高的水平,但是NCM材料在硫基電解液中的容量發揮過低,且循環過程中衰降速度過快,以至于無法滿足實際應用的需求。解決這一問題可以通過在電解液中添加一定量的共溶劑,降低電解液的粘度,同時保持電解液良好的抗氧化特性,其中酯類溶劑就是一種比較好的選擇。

XPS分析發現,在不添加FEC的電解液中循環后,NCM材料的Ni 2p、Mn 2p和Co 2p特征峰的強度出現了輕微的降低,而在添加FEC的電解液中循環后,NCM顆粒表面的過渡金屬元素特征峰的強度出現了顯著的降低,這些特征峰強度的變化主要反應了NCM電極材料表面的SEI膜的厚度變化,這一結果表明在不添加FEC的電解液中循環后NCN材料的表面并沒有出現顯著的變化。

硫基電解液能夠提升NCM/石墨電池的循環性能

在不添加FEC的電解液中循環后,NCM材料表面的C 1s和F 1s的特征峰并沒有出現顯著的變化,在S 2p上,循環后的NCM電極強度出現了明顯的增加。

在室溫下,添加FEC的電解液中循環后的NCM正極表面則有較為顯著的變化,其中炭黑和PVDF對應的一些特征峰的強度出現了明顯的降低,這表明材料表面形成了較厚的SEI膜,這一點我們也可以從C 1s的特征峰強度變化能夠看到。而S 2p的特征峰在這里出現了明顯的變化,不僅強度出現了明顯的升高,還出現了一些新的特征峰。在40℃下循環后,NCM正極材料表面的SEI膜的厚度出現了明顯的降低。

MESL具有良好的抗氧化性能,是一種具有潛力的高電壓電解液材料的選擇,但是在40℃下,仍然會在NCM電極表面發生較為嚴重的分解,從而導致NCM循環性能下降,因此需要配合其他溶劑使用。同時由于其不能在正、負極表面形成穩定的SEI膜,同時其粘度較高,因此不能作為單一溶劑使用,需要配合一些其他低粘度的共溶劑使用。

(責任編輯:fqj)

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 電解液
    +關注

    關注

    10

    文章

    849

    瀏覽量

    23156
  • 電池
    +關注

    關注

    84

    文章

    10621

    瀏覽量

    130242
收藏 人收藏

    評論

    相關推薦

    王東海最新Nature Materials:全固態鋰電池新突破

    的利用率較低,反應動力學較為緩慢。為克服這些局限性,科學家們嘗試通過設計導電添加劑、優化電解質界面和提升界面結構來改善電池性能。然而,這些策略未能根本性改變固態
    的頭像 發表于 01-09 09:28 ?181次閱讀
    王東海最新Nature Materials:全固態鋰<b class='flag-5'>硫</b><b class='flag-5'>電池</b>新突破

    調控磷酸酯阻燃電解液離子-偶極相互作用實現鈉離子軟包電池安全穩定運行

    研究背景 相較資源有限的鋰離子電池,鈉離子電池是一種極具前景的電化學儲能技術,尤其適用于大規模儲能系。然而,大多數鈉離子電池體系仍基于傳統碳酸酯
    的頭像 發表于 01-06 17:41 ?86次閱讀
    調控磷酸酯<b class='flag-5'>基</b>阻燃<b class='flag-5'>電解液</b>離子-偶極相互作用實現鈉離子軟包<b class='flag-5'>電池</b>安全穩定運行

    水系電解液寬電壓窗口設計助力超長壽命水系鈉離子電池

    【研究背景】水系鈉離子電池(ASIBs)具有高安全、低成本、快速充電等優點,在大規模儲能中顯示出巨大的潛力。然而,傳統的低濃度水系電解液(salt-in-water electrolytes
    的頭像 發表于 12-20 10:02 ?311次閱讀
    水系<b class='flag-5'>電解液</b>寬電壓窗口設計助力超長壽命水系鈉離子<b class='flag-5'>電池</b>

    快充過程析鋰、SEI生長和電解液分解耦合機制的定量分析

    機制進行了細致深入的分析。研究結果揭示,鋰沉積、固體電解質界面(SEI)的生長以及電解液的分解這三個關鍵過程存在著緊密的耦合作用,共同加劇了快速充電的條件下的電池性能衰減。該工作為研究
    的頭像 發表于 12-10 09:15 ?400次閱讀
    快充過程析鋰、SEI生長和<b class='flag-5'>電解液</b>分解耦合機制的定量分析

    鈉電新突破:實現寬溫長壽命電池電解液革新

    ?? 【研究背景】 鈉離子電池(SIBs)因其資源豐富、成本低等優勢成為鋰離子電池的有力替代品。電解液是SIBs的“血液”,對電池性能如容量
    的頭像 發表于 11-28 09:51 ?386次閱讀
    鈉電新突破:實現寬溫長壽命<b class='flag-5'>電池</b>的<b class='flag-5'>電解液</b>革新

    鎳氫電池電解液是什么

    鎳氫電池是一種常見的二次電池,具有較高的能量密度和良好的循環性能。其電解液電池中的關鍵組成部分,對電池
    的頭像 發表于 07-19 15:35 ?952次閱讀

    新宙邦擬在美國投建10萬噸/年電解液項目

    近日,新宙邦發布公告,宣布了一項重要的海外擴產計劃。為滿足北美地區客戶對碳酸酯溶劑及鋰離子電池電解液日益增長的需求,公司計劃在路易斯安那州的Ascension Parish投建一個大型生產項目。
    的頭像 發表于 05-24 11:29 ?640次閱讀

    最新Nature Energy開發新型稀釋劑助推鋰金屬電池實用化!

    眾所知周,通過調控電解液來穩定固體電解質間相(SEI),對于延長鋰金屬電池循環壽命至關重要。
    的頭像 發表于 05-07 09:10 ?862次閱讀
    最新Nature Energy開發新型稀釋劑助推鋰金屬<b class='flag-5'>電池</b>實用化!

    液流電池的工作原理是什么?液流電池的優缺點

    液流電池的核心組成部分包括電堆單元、電解液電解液存儲供給單元以及管理控制單元等。
    的頭像 發表于 04-30 18:00 ?5604次閱讀

    位傳感器監測鉛酸電池電解液

    化學反應,電解液位會略微下降,如果位過低,不僅會影響電池的正常工作,還可能會對電池造成損壞。 鉛酸
    的頭像 發表于 04-08 15:10 ?714次閱讀
    <b class='flag-5'>液</b>位傳感器監測鉛酸<b class='flag-5'>電池</b><b class='flag-5'>電解液</b><b class='flag-5'>液</b>位

    非質子型弱配位電解液實現無腐蝕超薄鋅金屬電池

    鋅金屬電池以高容量、低成本、環保等特點受到廣泛關注。但由于金屬鋅在傳統水系電解液中熱力學不穩定,鋅金屬電池的實際應用仍面臨挑戰。
    的頭像 發表于 04-02 09:05 ?529次閱讀
    非質子型弱配位<b class='flag-5'>電解液</b>實現無腐蝕超薄鋅金屬<b class='flag-5'>電池</b>

    LG、三星、索尼與A123圓柱電池設計及性能比拼

    電池每Ah的電解液用量如下圖所示,電解液應填充電極和隔膜中的所有孔,但仍在電池內留下一些空隙空間沒有被電解液填充,一般認為3g/Ah
    發表于 03-01 10:12 ?1250次閱讀
    LG、三星、索尼與A123圓柱<b class='flag-5'>電池</b>設計及<b class='flag-5'>性能</b>比拼

    弱溶劑化少層碳界面實現硬碳負極的高首效和穩定循環

    鈉離子電池負極面臨著首次庫倫效率低和循環穩定性差的問題,目前主流的解決方案是通過調節電解液的溶劑化結構,來調節固體電解質界面(SEI),
    的頭像 發表于 01-26 09:21 ?1692次閱讀
    弱溶劑化少層碳界面實現硬碳負極的高首效和穩定<b class='flag-5'>循環</b>

    鋰離子電池生產過程中濕度控制的重要性

    鋰離子電池在生產過程中對濕度要求非常高,主要是因為水分失控或粗化控制,會對電解液產生不良影響。電解液電池中離子傳輸的載體,由鋰鹽和有機溶劑組成,是鋰離子
    的頭像 發表于 01-25 17:10 ?1302次閱讀
    鋰離子<b class='flag-5'>電池</b>生產過程中濕度控制的重要性

    電池電解液如何影響電池質量?鋰電池電解液成分優勢是什么?

    電池電解液如何影響電池質量?鋰電池電解液成分優勢是什么? 鋰電池
    的頭像 發表于 01-11 14:09 ?1191次閱讀
    主站蜘蛛池模板: 综合免费一区二区三区| 一区二区三区免费在线| 天天干天天操天天透| 午夜快播| 日本黄色录象| 国产亚洲精品久久久极品美女| 国产成人综合网| 免费观看黄色网| 午夜影院一级片| 种子在线搜索| 色香蕉在线观看| 毛片免费高清免费| 大尺度视频在线| 天天草夜夜爽| 草馏社区| 欧美爱爱帝国综合社区| 亚洲免费成人网| 日本高清色图| 韩国中文字幕在线观看| www.色播.com| 欧美黑人换爱交换乱理伦片| 5151hh四虎国产精品| 4438x成人网最大色成网站| 高h肉宠文1v1男男| 天天综合欧美| 国产精品主播在线观看| 8000av在线| aaa级片| 天天做天天爱夜夜爽女人爽宅| 久热九九| 亚洲精品第三页| 特级一级黄色片| 黄 色 录像成 人播放免费99网| 亚洲天天在线| 我不卡老子影院午夜伦我不卡四虎 | 五月激情综合丁香色婷婷| 欧美一区二区三区成人看不卡| 成年人网站在线| 国产精品bdsm在线调教| 国产精品久久久久久吹潮| 欧美一区二区三区精品|