在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

機器學習將影響著電網(wǎng)領域的發(fā)展

我快閉嘴 ? 來源:千家網(wǎng) ? 作者:蒙光偉 ? 2020-07-07 10:05 ? 次閱讀

隨著能源格局即將發(fā)生巨大變化,現(xiàn)在是結合機器學習和電網(wǎng)的優(yōu)秀時機。

比爾·蓋茨(Bill Gates)在2017年表示:“如果我今天剛開始并尋找同一種對世界產(chǎn)生重大影響的機會,我將考慮三個領域。一是人工智能;第二是能源;第三是生物科學”。

毫無疑問,能源的未來在于可持續(xù)、可靠和“智能”的發(fā)電和配電系統(tǒng),以及主動而不是被動的網(wǎng)絡。電力公司擁有與網(wǎng)絡故障、網(wǎng)絡模型,來自發(fā)電機的運行信息和資產(chǎn)數(shù)據(jù)庫相關的大量且不斷增長的數(shù)據(jù)。

數(shù)據(jù)具有預測網(wǎng)絡故障和協(xié)助維護的巨大潛力。將來,通過機器學習,添加網(wǎng)絡故障記錄將是解決方案的一部分,而不是問題。通過添加更多記錄,可以為模型提供更多分析數(shù)據(jù),從而可以進行更準確,更準確的預測。

例如,機器學習算法可以訪問具有類型、位置、使用期限或使用期限配置文件和資產(chǎn)狀況、電路和負載數(shù)據(jù)以及現(xiàn)有故障數(shù)據(jù)的數(shù)據(jù)庫,并將故障的概率和成本返回為以及可能發(fā)生的時間,如以小時、天、周或月為單位。

機器學習有可能被用作經(jīng)濟的建模工具,通過成本效益分析評估與使用電網(wǎng)加固解決方案有關的戰(zhàn)略發(fā)展和決策。將來,我們不僅將對故障做出反應,還將使用通過分析技術經(jīng)濟數(shù)據(jù)來預測故障的模型來預測和避免故障。因此,通過機器學習,電力行業(yè)在開發(fā)主動系統(tǒng)而非被動系統(tǒng)方面邁出了一步。

在后疫情時代,最緊迫的挑戰(zhàn)是氣候變化,以英國為例,他們承諾到2050年過渡到零凈經(jīng)濟,電力網(wǎng)絡將發(fā)展到更加可再生的基礎。我們已經(jīng)可以看到,隨著清潔能源的發(fā)電在2020年的前三個月英國提供了40%的電力,可再生能源的地位日益增長,這是可再生能源首次超過化石燃料。

分析人士認為,可再生能源和可持續(xù)能源產(chǎn)業(yè)應像上次經(jīng)濟衰退那樣發(fā)揮更大的作用,并推動綠色經(jīng)濟復蘇。盡管并非沒有挑戰(zhàn),但這是可能的,并且機器學習可以解決某些問題。

即使使用最復雜的天氣預報,也很難準確預測風能和太陽能等可再生能源發(fā)電的波動。此外,內部安裝的設備(例如光伏和電池)的小型分布式發(fā)電和存儲(全球范圍為5000萬個)增加了系統(tǒng)的不確定性。

機器學習和人工智能可能會解決這些問題,因為這些算法可用于更準確地預測需求,以及可再生能源發(fā)電的輸出,無論短期還是長期都使用預測。

現(xiàn)在,已開始使用已安裝的儲能裝置(包括電池)來最大程度地減少可再生能源發(fā)電的不確定性,并幫助實現(xiàn)可再生能源需求的更高百分比。但是,該解決方案可能存在可靠性問題和局限性,例如電池退化和意外故障,需要不斷監(jiān)控和維護。

使用機器學習作為工具來監(jiān)視和預測儲能系統(tǒng)中的潛在故障可能會導致系統(tǒng)更加可靠和高效,并且通過使用AI和機器學習算法,電力需求和可再生能源發(fā)電將更加可預測,儲能更加可靠并高效。

科學界已經(jīng)在研究電力網(wǎng)絡中“智能”能源和機器學習的美好前景。關于能源需求的預測,太陽能發(fā)電的預測,甚至對可以從城市環(huán)境中的食物垃圾中收集的能量的精確預測,已經(jīng)有很多說法。考慮到其他領域對AI和機器學習的深入了解和廣泛使用,隨著我們過渡到零凈經(jīng)濟和社會,電網(wǎng)領域的可能性令人興奮。
責任編輯:tzh

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 電網(wǎng)
    +關注

    關注

    13

    文章

    2093

    瀏覽量

    59236
  • 人工智能
    +關注

    關注

    1792

    文章

    47425

    瀏覽量

    238962
  • 機器學習
    +關注

    關注

    66

    文章

    8425

    瀏覽量

    132771
收藏 人收藏

    評論

    相關推薦

    傳統(tǒng)機器學習方法和應用指導

    用于開發(fā)生物學數(shù)據(jù)的機器學習方法。盡管深度學習(一般指神經(jīng)網(wǎng)絡算法)是一個強大的工具,目前也非常流行,但它的應用領域仍然有限。與深度學習相比
    的頭像 發(fā)表于 12-30 09:16 ?259次閱讀
    傳統(tǒng)<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法和應用指導

    ASR和機器學習的關系

    自動語音識別(ASR)技術的發(fā)展一直是人工智能領域的一個重要分支,它使得機器能夠理解和處理人類語言。隨著機器學習(ML)技術的迅猛
    的頭像 發(fā)表于 11-18 15:16 ?350次閱讀

    NPU與機器學習算法的關系

    在人工智能領域機器學習算法是實現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學習
    的頭像 發(fā)表于 11-15 09:19 ?515次閱讀

    具身智能與機器學習的關系

    具身智能(Embodied Intelligence)和機器學習(Machine Learning)是人工智能領域的兩個重要概念,它們之間存在著密切的關系。 1. 具身智能的定義 具身智能是指智能體
    的頭像 發(fā)表于 10-27 10:33 ?410次閱讀

    RISC-V在AI領域發(fā)展前景怎么樣?

    隨著人工智能的不斷發(fā)展,現(xiàn)在的視覺機器人,無人駕駛等智能產(chǎn)品的不斷更新迭代,發(fā)現(xiàn)ARM占用很大的市場份額,推出的ARM Cortex M85性能也是杠杠的,不知道RISC-V在AI領域有哪些參考方案?
    發(fā)表于 10-25 19:13

    【「時間序列與機器學習」閱讀體驗】+ 簡單建議

    這本書以其系統(tǒng)性的框架和深入淺出的講解,為讀者繪制了一幅時間序列分析與機器學習融合應用的宏偉藍圖。作者不僅扎實地構建了時間序列分析的基礎知識,更巧妙地展示了機器學習如何在這一
    發(fā)表于 08-12 11:21

    【《時間序列與機器學習》閱讀體驗】+ 了解時間序列

    速度。 可以探索現(xiàn)象發(fā)展變化的規(guī)律,對某些社會經(jīng)濟現(xiàn)象進行預測。 利用時間序列可以在不同地區(qū)或國家之間進行對比分析,這也是統(tǒng)計分析的重要方法之一。 而《時間序列與機器學習》一書的后幾章分別介紹了時間序列在廣告
    發(fā)表于 08-11 17:55

    人工智能、機器學習和深度學習是什么

    在科技日新月異的今天,人工智能(Artificial Intelligence, AI)、機器學習(Machine Learning, ML)和深度學習(Deep Learning, DL)已成為
    的頭像 發(fā)表于 07-03 18:22 ?1330次閱讀

    機器學習在數(shù)據(jù)分析中的應用

    隨著大數(shù)據(jù)時代的到來,數(shù)據(jù)量的爆炸性增長對數(shù)據(jù)分析提出了更高的要求。機器學習作為一種強大的工具,通過訓練模型從數(shù)據(jù)中學習規(guī)律,為企業(yè)和組織提供了更高效、更準確的數(shù)據(jù)分析能力。本文深入
    的頭像 發(fā)表于 07-02 11:22 ?656次閱讀

    深度學習與傳統(tǒng)機器學習的對比

    在人工智能的浪潮中,機器學習和深度學習無疑是兩大核心驅動力。它們各自以其獨特的方式推動著技術的進步,為眾多領域帶來了革命性的變化。然而,盡管它們都屬于
    的頭像 發(fā)表于 07-01 11:40 ?1433次閱讀

    名單公布!【書籍評測活動NO.35】如何用「時間序列與機器學習」解鎖未來?

    和專業(yè)知識,對這一領域進行系統(tǒng)的梳理和總結。然而,時間序列分析與機器學習技術相結合的書籍卻并不多見。 以上正是《時間序列與機器
    發(fā)表于 06-25 15:00

    SnapAI和機器學習引入Snapchat

    Snap首席執(zhí)行官伊萬·斯皮格近日宣布,公司加大投資力度,人工智能和機器學習技術深度引入其主打社交應用Snapchat,以進一步提升用戶吸引力。斯皮格直言,公司在
    的頭像 發(fā)表于 05-21 09:31 ?510次閱讀

    機器學習怎么進入人工智能

    ,人工智能已成為一個熱門領域,涉及到多個行業(yè)和領域,例如語音識別、機器翻譯、圖像識別等。 在編程中進行人工智能的關鍵是使用機器學習算法,這是
    的頭像 發(fā)表于 04-04 08:41 ?345次閱讀

    FPGA在深度學習應用中或取代GPU

    提供商外,英偉達還成立了專業(yè)的人工智能研究實驗室。 不過,機器學習軟件公司 Mipsology 的首席執(zhí)行官兼聯(lián)合創(chuàng)始人盧多維奇?拉祖爾 (Ludovic Larzul) 表示,GPU 還存在著一些缺陷
    發(fā)表于 03-21 15:19

    嵌入式系統(tǒng)發(fā)展前景?

    應用領域。隨著汽車電子化和智能化程度的不斷提高,嵌入式系統(tǒng)將在汽車控制、安全系統(tǒng)、自動駕駛等方面發(fā)揮更為重要的作用。 工智能和機器學習技術的發(fā)展為嵌入式系統(tǒng)提供了新的
    發(fā)表于 02-22 14:09
    主站蜘蛛池模板: 日韩免费网站| 好爽毛片一区二区三区四| 伊人久久大香线蕉电影院| 国产精品一区在线播放| 一级特黄aaa大片免色| 亚洲 欧美 另类 吹潮| 四虎影在永久地址在线观看| 午夜影院在线看| 91九色成人| 免费一级特黄特色大片在线观看| 日本天堂网在线观看| 亚洲 欧美 动漫| 特级毛片免费看| 欧美一级特黄啪啪片免费看| 免费人成观看在线网| 国产一级特黄在线播放| freesexvideo性残疾| 天天看天天干天天操| 国产午夜毛片v一区二区三区 | 天堂社区在线视频| 人与牲动交xxxbbb| 国产在线视频你懂得| 午夜影院三级| 国产免费一级在线观看| 中文字幕xxx| xxxxx69日本老师hd| 精品一区二区国语对白| 亚洲乱码一二三四区| 在线观看jyzzjyzz| 手机在线看片你懂得| 久久福利青草精品资源| 亚洲国产午夜看片| you ji z z日本人在线观看| 99久久久精品免费观看国产| 午夜男人视频| 天堂网2021天堂手机版丶| 久久国产精品视频| 午夜剧| 日韩夜夜操| 免费 在线观看 视频| 亚洲性色成人|