隨著開關頻率和開關速度不斷的提升,在使用開關型的DC/DC電源的時候,要特別關注輸入輸出電源的紋波。但是測量DC/DC電源的紋波和噪聲沒有一個行業標準。不同廠家的測試環境以及測試標準都不太一樣,導致很多人很迷惑。這篇文章提供了一個簡單可靠的電源紋波的測試方法,這種測試方法的可復現性很好,并且不需要帶寬很高的示波器和探頭。
這篇文章適合用于測量開關型DC/DC轉換器的輸入以及輸出紋波,包括電荷泵,但是不適用于低壓差穩壓器(LDO)。
紋波和噪聲Ripple and Noise
紋波和噪聲指的是在DC/DC轉換器輸入輸出電容上的交流耦合信號,在測試中,一般我們會將這個信號帶寬限制到20MHz。
紋波和噪聲主要由以下四項組成。
電源紋波(PWM frequency RIPPLE),和PWM頻率相同的。這個紋波表示了輸入和輸出電容上的充放電過程,在最大負載時,這個紋波達到最大值。這種電壓的波動可以通過加大輸入輸出電容、加大輸出電感來減小。
開關噪聲(SWITCHING NOISE),這種噪聲發生在電源的開關時刻。雖然開關噪聲的重復周期和PWM頻率一致,但是振蕩頻率一般都很高。開關噪聲新的振幅一般取決于電源芯片、電路寄生參數以及PCB布板。
工頻噪聲(Recfified main RIPPLE),一般是交流供電頻率的兩倍。我國供電頻率是50Hz,所以它的紋波主要來自工頻50Hz變壓器。大小取決于整流電路的類型。對于半波整流,50Hz;對于全波整流,是100Hz;對于三相全波整流,300Hz。
非周期性的隨機噪聲(NOISE),和AC電源開關頻率均無關。
由于現在AC-DC部分大多采用模塊開關電源,后級DC/DC電路工頻噪聲比較小;隨機噪聲無法量化。所以一般不考慮這兩項的影響,典型的開關電源紋波噪聲如下圖所示。我們需要測量的是紋波以及開關噪聲之和。
接下來描述了在錯誤以及正確測量電源紋波噪聲的兩種方式。
下圖是一個錯誤的測量方式,因為示波器的地線會拾取輻射噪聲。示波器的地線和信號探頭形成的環路形成了一個天線。環路面積越大,在電源PWM切換時,示波器接受到的開關噪聲就越大。
在測量中,如何減小拾取的輻射噪聲?最簡單可靠的方法是采用一個接地環來測量電源紋波以及噪聲。為了進一步的降低測試誤差,可以將示波器探頭和地線直接放在電源輸出電容得兩端。如下圖所示,采用這種方法,在信號探頭和地線之間的環路面積很小,所以測量中帶來誤差的噪聲幾乎可以忽略。
因為現在的示波器探頭都附帶有接地環,所以,不再詳細描述如何做一個接地環了。
1、無源探頭DC耦合測試
使用無源探頭DC耦合測試,示波器內部設置為DC耦合,耦合阻抗為1Mohm,此時無源探頭的地線接主板地,信號線接待測電源信號。這種測量方法可以測到除DC以外的電源噪聲紋波。
如圖4所示,當采用普通的鱷魚夾探頭時,由于地和待測信號之間的環路太大,而探頭探測點靠近高速運行的IC芯片,近場輻射較大,會有很多EMI噪聲輻射到探頭回路中,使測試的數據不準確。為了改善這種情況,推薦用無源探頭測試紋波時,使用右圖中的探頭,將地信號纏繞在信號引腳上,相當于在地和信號之間存在一個環路電感,對高頻信號相當于高阻,有效抑制由于輻射產生的高頻噪聲。更多時候,建議測試者采用第三種測試方法,將一個漆包線繞在探頭上,然后將漆包線的焊接到主板地網絡上,移動探頭去測試每一路電源紋波噪聲。同時無源探頭要求盡量采用1:1的探頭,杜絕使用1:10的探頭。
無源探頭地線兩種處理方法:
對于示波器,若垂直刻度為xV/div,示波器垂直方向為10div,滿量程為10xV,示波器采樣AD為8位,則量化誤差為10x/256 V。例如一個1V電源,噪聲紋波為50mV,如果要顯示這個信號,需要設置垂直刻度為200mV/div,此時量化誤差為7.8mV,如果把直流1V通過offset去掉,只顯示紋波噪聲信號,垂直刻度設置為10mV即可,此時的量化誤差為0.4mV。
使用無源探頭DC耦合測試,示波器設置如下:
(1)1Mohm端接匹配;
(2)DC耦合;
(3)全帶寬;
(4)offset設置為電源電壓;
2、無源探頭AC耦合測試
使用無源探頭DC耦合需要設置offset,對于電源電壓不穩定的情況,offset設置不合理,會導致屏幕上顯示的信號超出量程,此時選擇AC耦合,使用內置的擱置電路來濾去直流分量。對于大多數的示波器,會有如下參數,設置為AC耦合,此時測量的為10Hz以上的噪聲紋波。
示波器兩種耦合方式頻點
使用無源探頭AC耦合測試,設置如下:
(1)1Mohm端接匹配;
(2)AC耦合;
(3)全帶寬;
(4)offset設置為0;
3、 同軸線外部隔直電容DC50歐耦合測試
由于無源探頭的帶寬較低,而電源開關噪聲一般都在百MHz以上,同時電源內阻一般在幾百毫歐以內,選擇高阻1Mohm的無源探頭對于高頻會產生反射現象,因此可以選擇用同軸線來代替無源探頭,此時示波器端接阻抗設置為50歐,與同軸線阻抗相匹配,根據傳輸線理論,電源噪聲沒有反射,此時認為測量結果最準確。
利用同軸線的測量方法,最準確的是采用DC50歐,但是大部分示波器在DC50歐時offset最大電壓為1V,無法滿足大部分電源的測量要求,而示波器內部端接阻抗為50歐時,不支持AC耦合,因此需要外置一個AC電容,如圖6所示,當串聯電容值為10uF時,根據表1可以看到,此時可以準確測試到2KHz以上的紋波噪聲信號。
同軸線DC50測量圖
4、同軸線AC1M歐耦合測試
由于從PMU出來的電源紋波噪聲大多集中在1MHz以內,如果采用同軸線DC50外置隔直電容測量方法,低頻噪聲分量損失較為嚴重,因此改用圖7所示的測量方法,利用同軸線傳輸信號,示波器設置為AC1M,這樣雖然存在反射,但是反射信號經過較長CABLE線折返傳輸后,影響是有限的,示波器在R2上采集電壓值可以認為仍然可以被參考。
同軸線AC1M測量圖
為了避免反射,在同軸線接到示波器的接口處端接一個50ohm電阻,使示波器輸入阻抗和cable線特征阻抗匹配。
同軸線AC1M測量改進圖
5、差分探頭外置電容DC耦合測試
由于示波器的探頭地和機殼地通過一個小電容接在一起,而示波器的機殼地又通過三角插頭和大地接在一起,在實驗室里,幾乎所有的設備地都和大地接在一起,示波器內部地線接法如圖9所示,因此上面介紹的兩種方法都無法解決地干擾問題,為了解決這個問題,需要引入浮地示波器或者差分探頭。
示波器內部地線接法
如圖10所示,為差分接法,由于差分探頭為有源探頭,外置差動放大器,可以將待測信號通過差分方式接入,使示波器的地和待測件地隔離開,達到浮地效果。但是差分探頭在示波器內部只能DC50歐耦合,而offset最大一般不超過1V,因此需要在差分探頭上串聯隔直電容。使用差分探頭測量時關鍵是探頭的CMRR要足夠大,這樣才能有效抑制共模噪聲。
實測案例(Example)
下圖描述了采用兩個不同的測試方法得到的Vout波形。電源電路是一個BUCK轉換電路(AAT1121),工作在1.5MHz的開關頻率,輸出電壓為1.8V/250mA。示波器采用全帶寬測試。可以看到伴隨著PWM開關,在綠色的trace2有一個很高的噪音以及振鈴,但是trace3上卻沒有明顯的噪聲。通過對比可以看到,測試方法的選擇對結果的準確性很關鍵。
下圖是采用20MHz帶寬限制測試到的電源的紋波以及噪聲。示波器20MHz的帶寬限制是為了防止無源探頭帶入的共模噪聲。可以看到AAT1121BUCK轉換器的紋波噪聲為10mVp-p,幾乎看不到開關噪聲。這主要是歸功于BUCK控制器的低噪聲設計,良好的PCB設計,以及恰當的測試方法。
總結
下面總結一下正確的測量DC/DC開關電源紋波和噪音的方法。
1)限制示波器帶寬為20MHz(大多中低端示波器檔位限制在20MHz,高端產品還有200MHz帶寬限制的選擇),目的是避免數字電路的高頻噪聲影響紋波測量,盡量保證測量的準確性。
2)設置耦合方式為交流耦合,方便測量(以更小檔位來仔細觀測紋波,不關心直流電平)。
3)保證探頭接地盡量短(測量紋波動輒上百mV的主要原因就是接地線太長),盡量使用探頭自帶的原裝測試短針。如果沒有測試短針,可以拆除探頭的接地線和外殼,露出探頭地殼,自制接地線纏繞在探頭地殼上,保證接地線長度小于1cm。
-
轉換器
+關注
關注
27文章
8703瀏覽量
147183 -
PWM
+關注
關注
114文章
5186瀏覽量
213957 -
電源紋波
+關注
關注
5文章
209瀏覽量
16358
原文標題:紋波和噪聲測試
文章出處:【微信號:WW_CGQJS,微信公眾號:傳感器技術】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論