在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

基于Python 的人工神經網絡的工作原理

電子設計 ? 來源:阿里云云棲社區 ? 作者:Vihar Kurama ? 2020-12-31 17:07 ? 次閱讀

摘要: 深度學習背后的主要原因是人工智能應該從人腦中汲取靈感。本文就用一個小例子無死角的介紹一下深度學習!

人腦模擬

深度學習背后的主要原因是人工智能應該從人腦中汲取靈感。此觀點引出了“神經網絡”這一術語。人腦中包含數十億個神經元,它們之間有數萬個連接。很多情況下,深度學習算法和人腦相似,因為人腦和深度學習模型都擁有大量的編譯單元(神經元),這些編譯單元(神經元)在獨立的情況下都不太智能,但是當他們相互作用時就會變得智能。

我認為人們需要了解到深度學習正在使得很多幕后的事物變得更好。深度學習已經應用于谷歌搜索和圖像搜索,你可以通過它搜索像“擁抱”這樣的詞語以獲得相應的圖像。-杰弗里·辛頓

神經元

神經網絡的基本構建模塊是人工神經元,它模仿了人類大腦的神經元。這些神經元是簡單、強大的計算單元,擁有加權輸入信號并且使用激活函數產生輸出信號。這些神經元分布在神經網絡的幾個層中。

inputs 輸入 outputs 輸出 weights 權值 activation 激活

inputs 輸入 outputs 輸出 weights 權值 activation 激活

人工神經網絡的工作原理是什么?

深度學習由人工神經網絡構成,該網絡模擬了人腦中類似的網絡。當數據穿過這個人工網絡時,每一層都會處理這個數據的一方面,過濾掉異常值,辨認出熟悉的實體,并產生最終輸出。

pIYBAF9uKfKAffscAApv94LXQQk821.png

輸入層:該層由神經元組成,這些神經元只接收輸入信息并將它傳遞到其他層。輸入層的圖層數應等于數據集里的屬性或要素的數量。輸出層:輸出層具有預測性,其主要取決于你所構建的模型類型。隱含層:隱含層處于輸入層和輸出層之間,以模型類型為基礎。隱含層包含大量的神經元。處于隱含層的神經元會先轉化輸入信息,再將它們傳遞出去。隨著網絡受訓練,權重得到更新,從而使其更具前瞻性。

神經元的權重

權重是指兩個神經元之間的連接的強度或幅度。你如果熟悉線性回歸的話,可以將輸入的權重類比為我們在回歸方程中用的系數。權重通常被初始化為小的隨機數值,比如數值0-1。

前饋深度網絡

前饋監督神經網絡曾是第一個也是最成功的學習算法。該網絡也可被稱為深度網絡、多層感知機(MLP)或簡單神經網絡,并且闡明了具有單一隱含層的原始架構。每個神經元通過某個權重和另一個神經元相關聯。

該網絡處理向前處理輸入信息,激活神經元,最終產生輸出值。在此網絡中,這稱為前向傳遞。

input layer 輸入層   hidden layer 輸出層  output layer 輸出層

input layer 輸入層 hidden layer 輸出層 output layer 輸出層

激活函數

激活函數就是求和加權的輸入到神經元的輸出的映射。之所以稱之為激活函數或傳遞函數是因為它控制著激活神經元的初始值和輸出信號的強度。

用數學表示為:

pIYBAF9uKfaARYAtAABl2J8NKNI659.png

我們有許多激活函數,其中使用最多的是整流線性單元函數、雙曲正切函數和solfPlus函數。

激活函數的速查表如下:

pIYBAF9uKfmADac7AAMcbnb-Ock107.png

反向傳播

在網絡中,我們將預測值與預期輸出值相比較,并使用函數計算其誤差。然后,這個誤差會傳回這個網絡,每次傳回一個層,權重也會根絕其導致的誤差值進行更新。這個聰明的數學法是反向傳播算法。這個步驟會在訓練數據的所有樣本中反復進行,整個訓練數據集的網絡更新一輪稱為一個時期。一個網絡可受訓練數十、數百或數千個時期。

prediction error 預測誤差

prediction error 預測誤差

代價函數和梯度下降

代價函數度量了神經網絡對給定的訓練輸入和預期輸出“有多好”。該函數可能取決于權重、偏差等屬性。

代價函數是單值的,并不是一個向量,因為它從整體上評估神經網絡的性能。在運用梯度下降最優算法時,權重在每個時期后都會得到增量式地更新。

兼容代價函數

用數學表述為差值平方和:

target 目標值 output 輸出值

target 目標值 output 輸出值

權重更新的大小和方向是由在代價梯度的反向上采取步驟計算出的。

其中η 是學習率

其中η 是學習率

其中Δw是包含每個權重系數w的權重更新的向量,其計算方式如下:

target 目標值 output 輸出值

target 目標值 output 輸出值

圖表中會考慮到單系數的代價函數

initial weight 初始權重 gradient 梯度 global cost minimum 代價極小值

initial weight 初始權重 gradient 梯度 global cost minimum 代價極小值

在導數達到最小誤差值之前,我們會一直計算梯度下降,并且每個步驟都會取決于斜率(梯度)的陡度。

多層感知器(前向傳播)

這類網絡由多層神經元組成,通常這些神經元以前饋方式(向前傳播)相互連接。一層中的每個神經元可以直接連接后續層的神經元。在許多應用中,這些網絡的單元會采用S型函數或整流線性單元(整流線性激活)函數作為激活函數。

現在想想看要找出處理次數這個問題,給定的賬戶和家庭成員作為輸入

要解決這個問題,首先,我們需要先創建一個前向傳播神經網絡。我們的輸入層將是家庭成員和賬戶的數量,隱含層數為1, 輸出層將是處理次數。

將圖中輸入層到輸出層的給定權重作為輸入:家庭成員數為2、賬戶數為3。

現在將通過以下步驟使用前向傳播來計算隱含層(i,j)和輸出層(k)的值。

步驟:
1, 乘法-添加方法。
2, 點積(輸入*權重)。
3,一次一個數據點的前向傳播。
4, 輸出是該數據點的預測。

pIYBAF9uKgWAXVELAAJSfBDtxCw917.png

i的值將從相連接的神經元所對應的輸入值和權重中計算出來。

i = (2 * 1) + (3 * 1) → i = 5

同樣地,j = (2 * -1) + (3 * 1) → j = 1

K = (5 * 2) + (1 * -1) → k = 9

o4YBAF9uKgiAei8mAAJ_H2WaEIc993.png

Python中的多層感知器問題的解決

o4YBAF9uKguAE0w2AAQUGfpaa4c337.png


pIYBAF9uKg2AbISSAAC1D0puXe0822.png

激活函數的使用

為了使神經網絡達到其最大預測能力,我們需要在隱含層應用一個激活函數,以捕捉非線性。我們通過將值代入方程式的方式來在輸入層和輸出層應用激活函數。

這里我們使用整流線性激活(ReLU):

pIYBAF9uKg6ADZzCAACLyPft-Xg567.png


pIYBAF9uKhKAPQ_yAAQOpEPPeO0461.png


o4YBAF9uKhSAVSsYAAB5K-MERNU695.png

用Keras開發第一個神經網絡

關于Keras:

Keras是一個高級神經網絡的應用程序編程接口,由Python編寫,能夠搭建在TensorFlow,CNTK,或Theano上。

使用PIP在設備上安裝Keras,并且運行下列指令。

在keras執行深度學習程序的步驟
1,加載數據;
2,創建模型;
3,編譯模型;
4,擬合模型;
5,評估模型;

開發Keras模型

全連接層用Dense表示。我們可以指定層中神經元的數量作為第一參數,指定初始化方法為第二參數,即初始化參數,并且用激活參數確定激活函數。既然模型已經創建,我們就可以編譯它。我們在底層庫(也稱為后端)用高效數字庫編譯模型,底層庫可以用Theano或TensorFlow。目前為止,我們已經完成了創建模型和編譯模型,為進行有效計算做好了準備。現在可以在PIMA數據上運行模型了。我們可以在模型上調用擬合函數f(),以在數據上訓練或擬合模型。

我們先從KERAS中的程序開始,

o4YBAF9uKhqAB-1WAAV7TEEqJvo172.png


pIYBAF9uKhyABk_MAAHzJQTAuNw919.png

神經網絡一直訓練到150個時期,并返回精確值。

本文由北郵@愛可可-愛生活老師推薦阿里云云棲社區組織翻譯。

作者:Vihar Kurama

譯者:荷葉。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4777

    瀏覽量

    100961
收藏 人收藏

    評論

    相關推薦

    人工神經網絡原理及下載

    人工神經網絡是根據人的認識過程而開發出的一種算法。假如我們現在只有一些輸入和相應的輸出,而對如何由輸入得到輸出的機理并不清楚,那么我們可以把輸入與輸出之間的未知過程看成是一個“網絡”,通過不斷地給
    發表于 06-19 14:40

    應用人工神經網絡模擬污水生物處理

    應用人工神經網絡模擬污水生物處理(1.浙江工業大學建筑工程學院, 杭州 310014; 2.鎮江水工業公司排水管理處,鎮江 212003)摘要:針對復雜的非線性污水生物處理過程,開發了徑向基函數的人工
    發表于 08-08 09:56

    人工神經網絡課件

    人工神經網絡課件
    發表于 06-19 10:15

    【PYNQ-Z2試用體驗】神經網絡基礎知識

    前言前面我們通過notebook,完成了在PYNQ-Z2開發板上編寫并運行python程序。我們的最終目的是基于神經網絡,完成手寫的數字識別。在這之前,有必要講一下神經網絡的基本概念和工作原理
    發表于 03-03 22:10

    人工神經網絡實現方法有哪些?

    人工神經網絡(Artificial Neural Network,ANN)是一種類似生物神經網絡的信息處理結構,它的提出是為了解決一些非線性,非平穩,復雜的實際問題。那有哪些辦法能實現人工
    發表于 08-01 08:06

    怎么解決人工神經網絡并行數據處理的問題

    本文提出了一個基于FPGA 的信息處理的實例:一個簡單的人工神經網絡應用Verilog 語言描述,該數據流采用模塊化的程序設計,并考慮了模塊間數據傳輸信號同 步的問題,有效地解決了人工神經網絡
    發表于 05-06 07:22

    嵌入式中的人工神經網絡的相關資料分享

    人工神經網絡在AI中具有舉足輕重的地位,除了找到最好的神經網絡模型和訓練數據集之外,人工神經網絡的另一個挑戰是如何在嵌入式設備上實現它,同時
    發表于 11-09 08:06

    不可錯過!人工神經網絡算法、PID算法、Python人工智能學習等資料包分享(附源代碼)

    為了方便大家查找技術資料,電子發燒友小編為大家整理一些精華資料,讓大家可以參考學習,希望對廣大電子愛好者有所幫助。 1.人工神經網絡算法的學習方法與應用實例(pdf彩版) 人工神經
    發表于 09-13 16:41

    基于FPGA的人工神經網絡實現方法的研究

    基于FPGA的人工神經網絡實現方法的研究 引 言    人工神經網絡(Artificial Neural Network,ANN)是一種類似生物
    發表于 11-17 17:17 ?1236次閱讀
    基于FPGA<b class='flag-5'>的人工</b><b class='flag-5'>神經網絡</b>實現方法的研究

    基于FPGA的人工神經網絡實現方法的研究

    基于FPGA的人工神經網絡實現方法的研究 引言   人工神經網絡(ArtificialNeuralNetwork,ANN)是一種類似生物神經網
    發表于 11-21 16:25 ?4812次閱讀

    卷積神經網絡工作原理 卷積神經網絡通俗解釋

    卷積神經網絡工作原理 卷積神經網絡通俗解釋? 卷積神經網絡(Convolutional Neural Network, CNN)是一種眾所周知的深度學習算法,是
    的頭像 發表于 08-21 16:49 ?3827次閱讀

    人工神經網絡工作原理是什么

    和學習。本文將詳細介紹人工神經網絡工作原理,包括其基本概念、結構、學習算法和應用領域。 基本概念 1.1 神經神經元是
    的頭像 發表于 07-02 10:06 ?1370次閱讀

    人工神經網絡工作原理及應用

    、自然語言處理等。 神經網絡的基本概念 神經網絡是由大量的節點(或稱為神經元)組成的網絡結構。每個節點都與其他節點相連,形成一個復雜的網絡
    的頭像 發表于 07-05 09:25 ?759次閱讀

    前饋神經網絡工作原理和應用

    前饋神經網絡(Feedforward Neural Network, FNN),作為最基本且應用廣泛的一種人工神經網絡模型,其工作原理和結構對于理解深度學習及
    的頭像 發表于 07-08 11:28 ?1846次閱讀

    Python自動訓練人工神經網絡

    人工神經網絡(ANN)是機器學習中一種重要的模型,它模仿了人腦神經元的工作方式,通過多層節點(神經元)之間的連接和權重調整來學習和解決問題。
    的頭像 發表于 07-19 11:54 ?385次閱讀
    主站蜘蛛池模板: 天天噜日日噜夜夜噜| 夜夜夜夜爽| 污污视频网址| 久久人人视频| 亚洲视频精品| 户外露出精品视频国产| 四虎永久影院| 色多多·com| 午夜性影院| 四虎影院4hu| 亚洲淫视频| 特级毛片免费视频观看| 日韩aa| 婷婷婷色| 欧美天堂在线观看| 国产拍拍拍免费视频网站| 免费成人黄色网址| 四虎影在线永久免费观看| 日本在线视频www色| 四虎影院久久久| 日本高清视频色www在线观看| 特黄三级| 你懂的网站在线播放| 欧美性狂猛xxxxxbbbbb| 免费在线观看你懂的| 丁香六月五月婷婷| 嫩草影院播放地址一二三| 久久久久久久国产视频| 女人双腿搬开让男人桶| 黄频网站免费大全在线观看| www.黄视频| 91新地址| 在线观看深夜观看网站免费| 女bbbbxxxx毛片视频0| 色片在线| 人人做人人干| 久久天天躁狠狠躁夜夜2020一| 男人日女人视频免费看| 伊人玖玖| 男女交性拍拍拍高清视频| 在线资源站|