大規模數據中心、企業服務器或電信交換站使得功耗快速增長,因此高效AC/DC電源對于電信和數據通信基礎設施的發展至關重要。但是,電力電子行業中的硅MOSFET已達到其理論極限。同時,近來氮化鎵(GaN)晶體管已成為能夠取代硅基MOSFET的高性能開關,從而可提高能源轉換效率和密度。為了發揮GaN晶體管的優勢,需要一種具有新規格要求的新隔離方案。
GaN晶體管的開關速度比硅MOSFET要快得多,并可降低開關損耗,原因在于:
柵極電容和輸出電容更低。
較低的漏源極導通電阻(RDS(ON))可實現更高的電流操作,從而降低了傳導損耗。
無需體二極管,因此反向恢復電荷(QRR)低或為零。
GaN晶體管支持大多數包含單獨功率因數校正(PFC)和DC-DC部分的AC/DC電源:前端、無電橋PFC以及其后的LLC諧振轉換器(兩個電感和一個電容)。此拓撲完全依賴于圖1所示的半橋和全橋電路。
如果將數字信號處理器(DSP)作為主控制器,并用GaN晶體管替換硅MOSFET,就需要一種新的隔離技術來處理更高的開關頻率。這主要包括隔離式GaN驅動器。
圖1.適合電信和服務器應用的典型AC/DC電源
典型隔離解決方案和要求
UART通信隔離
從以前的模擬控制系統轉變為DSP控制系統時,需要將脈寬調制(PWM)信號與其他控制信號隔離開來。雙通道ADuM121可用于DSP之間的UART通信。為了盡量減小隔離所需系統的總體尺寸,進行電路板組裝時使用了環氧樹脂密封膠。小尺寸和高功率密度在AC/DC電源的發展過程中至關重要。市場需要小封裝隔離器產品。
PFC部分隔離
與使用MOS相比,使用GaN時,傳輸延遲/偏斜、負偏壓/箝位和ISO柵極驅動器尺寸非常重要。為了使用GaN驅動半橋或全橋晶體管,PFC部分可使用單通道驅動器ADuM3123,LLC部分則使用雙通道驅動器ADuM4223 。
為隔離柵后的器件供電
ADI公司的isoPower?技術專為跨越隔離柵傳輸功率而設計,ADuM5020緊湊型芯片解決方案采用該技術,能夠使GaN晶體管的輔助電源與柵極的輔助電源相匹配。
隔離要求
為了充分利用GaN晶體管,要求隔離柵極驅動器最好具有以下特性:
●最大允許柵電壓《7 V
●開關節點下dv/dt》100 kV/ms ,CMTI為100 kV/?s至200 kV/?s
●對于650 V應用,高低開關延遲匹配≤50 ns
●用于關斷的負電壓箝位(–3 V)
有幾種解決方案可同時驅動半橋晶體管的高端和低端。關于傳統的電平轉換高壓驅動器有一個傳說,就是最簡單的單芯片方案僅廣泛用于硅基MOSFET。在一些高端產品(例如,服務器電源)中,使用ADuM4223雙通道隔離驅動器來驅動MOS,以實現緊湊型設計。但是采用GaN時,電平轉換解決方案存在一些缺點,如傳輸延遲很大,共模瞬變抗擾度(CMTI)有限,用于高開關頻率的效果也不是很理想。與單通道驅動器相比,雙通道隔離驅動器缺少布局靈活性。同時,也很難配置負偏壓。表1對這些方法做了比較。
表1.驅動GaN半橋晶體管不同方法的比較
圖2.在isoPower器件中實現UART隔離和PFC部分隔離,需要采用ISO技術及其要求
對于GaN晶體管,可使用單通道驅動器。ADuM3123是典型的單通道驅動器,可使用齊納二極管和分立電路提供外部電源來提供負偏壓(可選),如圖3所示。
新趨勢:定制的隔離式GaN模塊
目前,GaN器件通常與驅動器分開封裝。這是因為GaN開關和隔離驅動器的制造工藝不同。未來,將GaN晶體管和隔離
柵驅動器集成到同一封裝中將會減少寄生電感,從而進一步增強開關性能。一些主要的電信供應商計劃自行封裝GaN系統,構建單獨的定制模塊。從長遠來看,用于GaN系統的驅動器也許能夠集成到更小的隔離器模塊中。如圖4所示,ADuM110N等微型單通道驅動器(低傳輸延遲、高頻率)和isoPower ADuM5020設計簡單,可支持這一應用趨勢。
圖3.用于GaN晶體管的單通道、隔離式isoCoupler驅動器
圖4.iCoupler ADuM110N和isoPower ADuM5020非常適合Navitas GaN模塊應用
結論
與傳統硅基MOSFET相比,GaN晶體管具有更小的器件尺寸、更低的導通電阻和更高的工作頻率等諸多優點。采用GaN技術可縮小解決方案的總體尺寸,且不影響效率。GaN器件具有廣闊的應用前景,特別是在中高電壓電源應用中。采用ADI公司的iCoupler?技術驅動新興GaN開關和晶體管能夠帶來出色的效益。
責編AJX
-
AD
+關注
關注
27文章
868瀏覽量
150433 -
晶體管
+關注
關注
77文章
9706瀏覽量
138490 -
GaN
+關注
關注
19文章
1947瀏覽量
73685
發布評論請先 登錄
相關推薦
評論