在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

芯片的未來靠哪些關(guān)鍵技術(shù)?

iIeQ_mwrfnet ? 來源:搜狐網(wǎng) ? 作者:搜狐網(wǎng) ? 2020-10-09 11:35 ? 次閱讀

除了先進制程之外,先進封裝也成為延續(xù)摩爾定律的關(guān)鍵技術(shù),像是2.5D、3D 和Chiplets 等技術(shù)在近年來成為半導(dǎo)體產(chǎn)業(yè)的熱門議題。究竟,先進封裝是如何在延續(xù)摩爾定律上扮演關(guān)鍵角色?而2.5D、3D 和Chiplets 等封裝技術(shù)又有何特點?

人工智能AI)、車聯(lián)網(wǎng)、5G 等應(yīng)用相繼興起,且皆須使用到高速運算、高速傳輸、低延遲、低耗能的先進功能芯片;然而,隨著運算需求呈倍數(shù)成長,究竟要如何延續(xù)摩爾定律,成為半導(dǎo)體產(chǎn)業(yè)的一大挑戰(zhàn)。

芯片微縮愈加困難,異構(gòu)整合由此而生

換言之,半導(dǎo)體先進制程紛紛邁入了7 納米、5 納米,接著開始朝3 納米和2 納米邁進,電晶體大小也因此不斷接近原子的物理體積限制,電子及物理的限制也讓先進制程的持續(xù)微縮與升級難度越來越高。 也因此,半導(dǎo)體產(chǎn)業(yè)除了持續(xù)發(fā)展先進制程之外,也「山不轉(zhuǎn)路轉(zhuǎn)」地開始找尋其他既能讓芯片維持小體積,同時又保有高效能的方式;而芯片的布局設(shè)計,遂成為延續(xù)摩爾定律的新解方,異構(gòu)整合(Heterogeneous Integration Design Architecture System,HIDAS)概念便應(yīng)運而生,同時成為IC 芯片的創(chuàng)新動能。 所謂的異構(gòu)整合,廣義而言,就是將兩種不同的芯片,例如記憶體+邏輯芯片、光電+電子元件等,透過封裝、3D 堆疊等技術(shù)整合在一起。換句話說,將兩種不同制程、不同性質(zhì)的芯片整合在一起,都可稱為是異構(gòu)整合。 因為應(yīng)用市場更加的多元,每項產(chǎn)品的成本、性能和目標(biāo)族群都不同,因此所需的異構(gòu)整合技術(shù)也不盡相同,市場分眾化趨勢逐漸浮現(xiàn)。為此,IC 代工、制造及半導(dǎo)體設(shè)備業(yè)者紛紛投入異構(gòu)整合發(fā)展,2.5D、3D 封裝、Chiplets 等現(xiàn)今熱門的封裝技術(shù),便是基于異構(gòu)整合的想法,如雨后春筍般浮現(xiàn)。

2.5D 封裝有效降低芯片生產(chǎn)成本

過往要將芯片整合在一起,大多使用系統(tǒng)單封裝(System in a Package,SiP)技術(shù),像是PiP(Package in Package)封裝、PoP(Package on Package)封裝等。然而,隨著智能手機、AIoT 等應(yīng)用,不僅需要更高的性能,還要保持小體積、低功耗,在這樣的情況下,必須想辦法將更多的芯片堆積起來使體積再縮小,因此,目前封裝技術(shù)除了原有的SiP 之外,也紛紛朝向立體封裝技術(shù)發(fā)展。 立體封裝概略來說,意即直接使用硅晶圓制作的「硅中介板」(Silicon interposer),而不使用以往塑膠制作的「導(dǎo)線載板」,將數(shù)個功能不同的芯片,直接封裝成一個具更高效能的芯片。換言之,就是朝著芯片疊高的方式,在硅上面不斷疊加硅芯片,改善制程成本及物理限制,讓摩爾定律得以繼續(xù)實現(xiàn)。 而立體封裝較為人熟知的是2.5D 與3D 封裝,這邊先從2.5D 封裝談起。所謂的2.5D 封裝,主要的概念是將處理器、記憶體或是其他的芯片,并列排在硅中介板(Silicon Interposer)上,先經(jīng)由微凸塊(Micro Bump)連結(jié),讓硅中介板之內(nèi)金屬線可連接不同芯片的電子訊號;接著再透過硅穿孔(TSV)來連結(jié)下方的金屬凸塊(Solder Bump),再經(jīng)由導(dǎo)線載板連結(jié)外部金屬球,實現(xiàn)芯片、芯片與封裝基板之間更緊密的互連。

2.5D和3D封裝是熱門的立體封裝技術(shù)。(Source:ANSYS) 目前為人所熟知的2.5D 封裝技術(shù),不外乎是臺積電的CoWoS。CoWoS 技術(shù)概念,簡單來說是先將半導(dǎo)體芯片(像是處理器、記憶體等),一同放在硅中介層上,再透過Chip on Wafer(CoW)的封裝制程連接至底層基板上。換言之,也就是先將芯片通過Chip on Wafer(CoW)的封裝制程連接至硅晶圓,再把CoW 芯片與基板連接,整合成CoWoS;利用這種封裝模式,使得多顆芯片可以封裝到一起,透過Si Interposer 互聯(lián),達到了封裝體積小,功耗低,引腳少的效果。

臺積電CoWos封裝技術(shù)概念。(Source:臺積電) 除了CoWos 外,扇出型晶圓級封裝也可歸為2.5D 封裝的一種方式。扇出型晶圓級封裝技術(shù)的原理,是從半導(dǎo)體裸晶的端點上,拉出需要的電路至重分布層(Redistribution Layer),進而形成封裝。因此不需封裝載板,不用打線(Wire)、凸塊(Bump),能夠降低30% 的生產(chǎn)成本,也讓芯片更薄。同時也讓芯片面積減少許多,也可取代成本較高的直通硅晶穿孔,達到透過封裝技術(shù)整合不同元件功能的目標(biāo)。 當(dāng)然,立體封裝技術(shù)不只有2.5D,還有3D 封裝。那么,兩者之間的差別究竟為何,而3D 封裝又有半導(dǎo)體業(yè)者正在采用? 相較于2.5D 封裝,3D 封裝的原理是在芯片制作電晶體(CMOS)結(jié)構(gòu),并且直接使用硅穿孔來連結(jié)上下不同芯片的電子訊號,以直接將記憶體或其他芯片垂直堆疊在上面。此項封裝最大的技術(shù)挑戰(zhàn)便是,要在芯片內(nèi)直接制作硅穿孔困難度極高,不過,由于高效能運算、人工智能等應(yīng)用興起,加上TSV 技術(shù)愈來愈成熟,可以看到越來越多的CPU、GPU 和記憶體開始采用3D 封裝。

3D封裝是直接將芯片堆疊起來。(Source:英特爾

臺積電、英特爾積極發(fā)展3D 封裝技術(shù)

在3D 封裝上,英特爾(Intel)和臺積電都有各自的技術(shù)。英特爾采用的是「Foveros」的3D 封裝技術(shù),使用異構(gòu)堆疊邏輯處理運算,可以把各個邏輯芯片堆棧一起。也就是說,首度把芯片堆疊從傳統(tǒng)的被動硅中介層與堆疊記憶體,擴展到高效能邏輯產(chǎn)品,如CPU、繪圖與AI 處理器等。以往堆疊僅用于記憶體,現(xiàn)在采用異構(gòu)堆疊于堆疊以往僅用于記憶體,現(xiàn)在采用異構(gòu)堆疊,讓記憶體及運算芯片能以不同組合堆疊。 另外,英特爾還研發(fā)3 項全新技術(shù),分別為Co-EMIB、ODI 和MDIO。Co-EMIB 能連接更高的運算性能和能力,并能夠讓兩個或多個Foveros 元件互連,設(shè)計人員還能夠以非常高的頻寬和非常低的功耗連接模擬器、記憶體和其他模組。ODI 技術(shù)則為封裝中小芯片之間的全方位互連通訊提供了更大的靈活性。頂部芯片可以像EMIB 技術(shù)一樣與其他小芯片進行通訊,同時還可以像Foveros 技術(shù)一樣,通過硅通孔(TSV)與下面的底部裸片進行垂直通訊。

英特爾Foveros技術(shù)概念。(Source:英特爾) 同時,該技術(shù)還利用大的垂直通孔直接從封裝基板向頂部裸片供電,這種大通孔比傳統(tǒng)的硅通孔大得多,其電阻更低,因而可提供更穩(wěn)定的電力傳輸;并透過堆疊實現(xiàn)更高頻寬和更低延遲。此一方法減少基底芯片中所需的硅通孔數(shù)量,為主動元件釋放了更多的面積,優(yōu)化裸片尺寸。 而臺積電,則是提出「3D 多芯片與系統(tǒng)整合芯片」(SoIC)的整合方案。此項系統(tǒng)整合芯片解決方案將不同尺寸、制程技術(shù),以及材料的已知良好裸晶直接堆疊在一起。 臺積電提到,相較于傳統(tǒng)使用微凸塊的3D 積體電路解決方案,此一系統(tǒng)整合芯片的凸塊密度與速度高出數(shù)倍,同時大幅減少功耗。此外,系統(tǒng)整合芯片是前段制程整合解決方案,在封裝之前連結(jié)兩個或更多的裸晶;因此,系統(tǒng)整合芯片組能夠利用該公司的InFO 或CoWoS 的后端先進封裝技術(shù)來進一步整合其他芯片,打造一個強大的「3D×3D」系統(tǒng)級解決方案。

此外,臺積電亦推出3DFabric,將快速成長的3DIC 系統(tǒng)整合解決方案統(tǒng)合起來,提供更好的靈活性,透過穩(wěn)固的芯片互連打造出強大的系統(tǒng)。藉由不同的選項進行前段芯片堆疊與后段封裝,3DFabric 協(xié)助客戶將多個邏輯芯片連結(jié)在一起,甚至串聯(lián)高頻寬記憶體(HBM)或異構(gòu)小芯片,例如類比、輸入/輸出,以及射頻模組。3DFabric 能夠結(jié)合后段3D 與前段3D 技術(shù)的解決方案,并能與電晶體微縮互補,持續(xù)提升系統(tǒng)效能與功能性,縮小尺寸外觀,并且加快產(chǎn)品上市時程。 在介紹完2.5D 和3D 之后,近來還有Chiplets 也是半導(dǎo)體產(chǎn)業(yè)熱門的先進封裝技術(shù)之一;最后,就來簡單說明Chiplets 的特性和優(yōu)勢。 除了2.5D 和3D 封裝之外,Chiplets 也是備受關(guān)注的技術(shù)之一。由于電子終端產(chǎn)品朝向高整合趨勢發(fā)展,對于高效能芯片需求持續(xù)增加,但隨著摩爾定律逐漸趨緩,在持續(xù)提升產(chǎn)品性能過程中,如果為了整合新功能芯片模組而增大芯片面積,將會面臨成本提高和低良率問題。因此,Chiplets 成為半導(dǎo)體產(chǎn)業(yè)因摩爾定律面臨瓶頸所衍生的技術(shù)替代方案。

Chiplets就像拼圖一樣,把小芯片組成大芯片

Chiplets 的概念最早源于1970 年代誕生的多芯片模組,其原理大致而言,即是由多個同質(zhì)、異構(gòu)等較小的芯片組成大芯片,也就是從原來設(shè)計在同一個SoC 中的芯片,被分拆成許多不同的小芯片分開制造再加以封裝或組裝,故稱此分拆之芯片為小芯片Chiplets。 由于先進制程成本急速上升,不同于SoC 設(shè)計方式,將大尺寸的多核心的設(shè)計,分散到較小的小芯片,更能滿足現(xiàn)今的高效能運算處理器需求;而彈性的設(shè)計方式不僅提升靈活性,也能有更好的良率及節(jié)省成本優(yōu)勢,并減少芯片設(shè)計時程,加速芯片Time to market 時間。

使用Chiplets 有三大好處。因為先進制程成本非常高昂,特別是模擬電路、I/O 等愈來愈難以隨著制程技術(shù)縮小,而Chiplets 是將電路分割成獨立的小芯片,并各自強化功能、制程技術(shù)及尺寸,最后整合在一起,以克服制程難以微縮的挑戰(zhàn)。此外,基于Chiplets 還可以使用現(xiàn)有的成熟芯片降低開發(fā)和驗證成本。 目前已有許多半導(dǎo)體業(yè)者采用Chiplets 方式推出高效能產(chǎn)品。像是英特爾的Intel Stratix 10 GX 10M FPGA 便是采用Chiplets 設(shè)計,以達到更高的元件密度和容量。該產(chǎn)品是以現(xiàn)有的Intel Stratix 10 FPGA 架構(gòu)及英特爾先進的嵌入式多芯片互連橋接(EMIB)技術(shù)為基礎(chǔ),運用了EMIB 技術(shù)融合兩個高密度Intel Stratix 10 GX FPGA 核心邏輯芯片以及相應(yīng)的I /O 單元。至于AMD 第二代EPYC 系列處理器也是如此。有別于第一代將Memory 與I/O 結(jié)合成14 納米CPU 的Chiplet 方式,第二代是把I/O 與Memory 獨立成一個芯片,并將7 納米CPU 切成8 個Chiplets 進行組合。

總而言之,過去的芯片效能都仰賴半導(dǎo)體制程的改進而提升,但隨著元件尺寸越來越接近物理極限,芯片微縮難度越來越高,要保持小體積、高效能的芯片設(shè)計,半導(dǎo)體產(chǎn)業(yè)不僅持續(xù)發(fā)展先進制程,同時也朝芯片架構(gòu)著手改進,讓芯片從原先的單層,轉(zhuǎn)向多層堆疊。也因如此,先進封裝也成為改善摩爾定律的關(guān)鍵推手之一,在半導(dǎo)體產(chǎn)業(yè)中引領(lǐng)風(fēng)騷。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 芯片
    +關(guān)注

    關(guān)注

    455

    文章

    50816

    瀏覽量

    423673
  • 封裝
    +關(guān)注

    關(guān)注

    126

    文章

    7901

    瀏覽量

    142966

原文標(biāo)題:芯片的未來,靠這些技術(shù)了

文章出處:【微信號:mwrfnet,微信公眾號:微波射頻網(wǎng)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    汽車總線及其關(guān)鍵技術(shù)的研究

    汽車總線及其關(guān)鍵技術(shù)的研究
    發(fā)表于 07-10 11:33

    CDMA原理與關(guān)鍵技術(shù)

    CDMA原理與關(guān)鍵技術(shù)
    發(fā)表于 08-16 20:25

    【視頻】智能家居系統(tǒng)關(guān)鍵技術(shù)分析與應(yīng)用

    的關(guān)系;4 智能家居體系架構(gòu)分析;5 智能家居涉及的關(guān)鍵技術(shù)分析;6 智能家居未來與展望;7 智能家居樣例演示。視頻鏈接:http://bbs.embedu.org/thread-8956-1-1.html
    發(fā)表于 02-26 10:50

    詳解5G的六大關(guān)鍵技術(shù)

    正在針對大規(guī)模天線信道測量與建模、陣列設(shè)計與校準(zhǔn)、導(dǎo)頻信道、碼本及反饋機制等問題進行研究,未來將支持更多的用戶空分多址(SDMA),顯著降低發(fā)射功率,實現(xiàn)綠色節(jié)能,提升覆蓋能力。  關(guān)鍵技術(shù)3:同時同
    發(fā)表于 12-07 18:40

    LTE-Advanced的關(guān)鍵技術(shù)和標(biāo)準(zhǔn)進展介紹

    )等關(guān)鍵技術(shù),能大大提高無線通信系統(tǒng)的峰值數(shù)據(jù)速率、峰值譜效率、小區(qū)平均譜效率以及小區(qū)邊界用戶性能,同時也能提高整個網(wǎng)絡(luò)的組網(wǎng)效率,這使得LTE和LTE-A系統(tǒng)成為未來幾年內(nèi)無線通信發(fā)展的主流,本文將對這些關(guān)鍵技術(shù)及其標(biāo)準(zhǔn)進展進
    發(fā)表于 06-14 06:41

    GPS芯片關(guān)鍵技術(shù)是什么

    談到GPS芯片主要關(guān)鍵技術(shù),這包括負(fù)責(zé)訊號處理─基頻(Baseband)及接收訊號─射頻(RF)。由于GPS訊號頻率(1,575.42MHz)來自于距離地面2萬公里的高空,訊號十分不穩(wěn)定,因此當(dāng)天
    發(fā)表于 07-30 06:52

    物聯(lián)網(wǎng)的關(guān)鍵技術(shù)有哪些

    物聯(lián)網(wǎng)關(guān)鍵技術(shù)————傳感器技術(shù)
    發(fā)表于 06-16 17:25

    McWiLL系統(tǒng)的關(guān)鍵技術(shù)/優(yōu)勢及應(yīng)用

    McWiLL系統(tǒng)概述McWiLL系統(tǒng)的關(guān)鍵技術(shù)McWiLL系統(tǒng)的優(yōu)勢McWiLL系統(tǒng)的應(yīng)用
    發(fā)表于 11-24 06:57

    鯤鵬920芯片是布局云端計算的關(guān)鍵技術(shù)

    華為推出鯤鵬920芯片:布局云端計算的關(guān)鍵技術(shù)之一
    發(fā)表于 01-25 07:05

    智能通信終端有哪些關(guān)鍵技術(shù)?

    智能通信終端有哪些關(guān)鍵技術(shù)
    發(fā)表于 05-26 07:04

    MIMO-OFDM中有哪些關(guān)鍵技術(shù)?

    本文介紹了MIMO-OFDM技術(shù)中的關(guān)鍵技術(shù),如信道估計、同步、分集技術(shù)和空時編碼等。
    發(fā)表于 05-27 06:05

    POE的關(guān)鍵技術(shù)有哪些?

    使用以太網(wǎng)線供電的優(yōu)勢是什么?PoE設(shè)備是怎么供電的?POE的關(guān)鍵技術(shù)有哪些?
    發(fā)表于 06-10 09:26

    什么是HarmonyOS?鴻蒙OS架構(gòu)及關(guān)鍵技術(shù)是什么?

    什么是HarmonyOS?鴻蒙OS架構(gòu)及關(guān)鍵技術(shù)是什么?
    發(fā)表于 09-23 09:02

    視覺導(dǎo)航關(guān)鍵技術(shù)及應(yīng)用

    由于視覺導(dǎo)航技術(shù)的應(yīng)用越來越普及 ,因此 ,有必要對視覺導(dǎo)航中的關(guān)鍵技術(shù)及應(yīng)用進行研究。文章對其中的圖像處理技術(shù)和定位與跟蹤技術(shù)進行了詳細(xì)研究 ,并與此相對應(yīng) ,介紹的相關(guān)的應(yīng)用。
    發(fā)表于 09-25 08:09

    未來網(wǎng)絡(luò)的關(guān)鍵技術(shù)

    未來網(wǎng)絡(luò)架構(gòu)的核心要點,一是網(wǎng)絡(luò)自身的能力要提升(確定性承載、內(nèi)生安全等);二是這種能力要能夠向兩端延伸,向應(yīng)用開放;三是控制面增強、轉(zhuǎn)發(fā)面簡潔。下面的章節(jié)將基于這個參考架構(gòu),對未來網(wǎng)絡(luò)關(guān)鍵技術(shù)需求的實現(xiàn)做一個簡要的描述。
    的頭像 發(fā)表于 02-01 16:53 ?1836次閱讀
    主站蜘蛛池模板: 国产色系视频在线观看免费| 岛国中文字幕| 一级片 在线播放| 日产乱码免费一卡二卡在线| 国产精品久久久久久久久kt| 久久精品国产免费看久久精品| 日本在线不卡视频| 日本最好的免费影院| 777国产精品永久免费观看| 性欧美极品另类| 婷婷在线五月| 91久久婷婷国产综合精品青草| 7777奇米| 四虎最新地址| 377p亚洲欧洲日本大胆色噜噜| 欧美另类丰满69xxxxx| 四虎网站在线播放| 性夜黄a爽爽免费视频国产| 国产黄色的视频| 日本偷偷操| 天堂网www天堂在线资源链接| 男男gay污小黄文| 久久国产精品久久久久久久久久| 女人成午夜大片7777在线| 高h肉宠文1v1男男| 国产免费久久精品| 2021国产精品成人免费视频| 天堂在线视频网站| 午夜一级毛片| 性欧美黑人| 人操人摸| 久久久久国产免费| 天天摸日日摸| 天天天干| 伊人欧美在线| 97久久综合区小说区图片专区| 亚洲资源在线观看| 久久中文字幕综合婷婷| aa在线视频| 欧美一区福利| www.天天操|