導讀:能量轉換系統必定存在能耗。
雖然實際應用中無法獲得100%的轉換效率,但是,一個高質量的電源效率可以達到非常高的水平,效率接近95%。
那么,如何實現呢?
1、轉換效率
絕大多數電源IC 的工作效率可以在特定的工作條件下測得,數據資料中給出了這些參數。一般廠商會給出實際測量的結果,但我們只能對我們自己的數據擔保。
圖1 給出了一個SMPS 降壓轉換器的電路實例,轉換效率可以達到97%,即使在輕載時也能保持較高效率。采用什么秘訣才能達到如此高的效率?
我們最好從了解SMPS 損耗的公共問題開始,開關電源的損耗大部分來自開關器件(MOSFET 和二極管),另外小部分損耗來自電感和電容。但是,如果使用非常廉價的電感和電容(具有較高電阻),將會導致損耗明顯增大。
選擇IC 時,需要考慮控制器的架構和內部元件,以期獲得高效指標。
例如,圖1 采用了多種方法來降低損耗,其中包括:同步整流,芯片內部集成低導通電阻的MOSFET,低靜態電流和跳脈沖控制模式。我們將在本文展開討論這些措施帶來的好處。
圖1 降壓轉換器集成了低導通電阻的MOSFET 采用同步整流,效率曲線如圖所示。
降壓型SMPS
損耗是任何SMPS 架構都面臨的問題,我們在此以圖2 所示降壓型(或buck)轉換器為例進行討論,圖中標明各點的開關波形,用于后續計算。
圖2
降壓轉換器的主要功能是把一個較高的直流輸入電壓轉換成較低的直流輸出電壓。
為了達到這個要求,MOSFET 以固定頻率(fS),在脈寬調制信號(PWM)的控制下進行開、關操作。當MOSFET 導通時,輸入電壓給電感和電容(L 和COUT)充電,通過它們把能量傳遞給負載。在此期間,電感電流線性上升,電流回路如圖2 中的回路1 所示。
當MOSFET 斷開時,輸入電壓斷開與電感的連接,電感和輸出電容為負載供電。電感電流線性下降,電流流過二極管,電流回路如圖中的環路2 所示。MOSFET 的導通時間定義為PWM 信號的占空比(D)。D 把每個開關周期分成[D × tS]和[(1 - D) × tS]兩部分,它們分別對應于MOSFET 的導通時間(環路1)和二極管的導通時間(環路2)。所有SMPS 拓撲(降壓、反相等)都采用這種方式劃分開關周期,實現電壓轉換。
?
?
對于降壓轉換電路,較大的占空比將向負載傳輸較多的能量,平均輸出電壓增加。相反,占空比較低時,平均輸出電壓也會降低。根據這個關系,可以得到以下理想情況下(不考慮二極管或MOSFET 的壓降)降壓型SMPS 的轉換公式:
VOUT= D × VIN
IIN= D × IOUT
需要注意的是,任何SMPS 在一個開關周期內處于某個狀態的時間越長,那么它在這個狀態所造成的損耗也越大。對于降壓型轉換器,D 越低(相應的VOUT 越低),回路2 產生的損耗也大。
2、開關電源的損耗
2.1 開關器件的損耗 MOSFET 傳導損耗
圖2 (以及其它絕大多數DC-DC 轉換器拓撲)中的MOSFET 和二極管是造成功耗的主要因素。相關損耗主要包括兩部分:傳導損耗和開關損耗。
MOSFET 和二極管是開關元件,導通時電流流過回路。器件導通時,傳導損耗分別由MOSFET 的導通電阻(RDS(ON))和二極管的正向導通電壓決定。
MOSFET 的傳導損耗(PCOND(MOSFET))近似等于導通電阻RDS(ON)、占空比(D)和導通時MOSFET 的平均電流(IMOSFET(AVG))的乘積。
PCOND(MOSFET)(使用平均電流)
= IMOSFET(AVG)2 × RDS(ON)× D
上式給出了SMPS 中MOSFET 傳導損耗的近似值,但它只作為電路損耗的估算值,因為電流線性上升時所產生的功耗大于由平均電流計算得到的功耗。對于“峰值”電流,更準確的計算方法是對電流峰值和谷值(圖3 中的IV 和IP)之間的電流波形的平方進行積分得到估算值。
圖3 典型的降壓型轉換器的MOSFET 電流波形 用于估算MOSFET 的傳導損耗。
下式給出了更準確的估算損耗的方法,利用IP 和IV 之間電流波形I2的積分替代簡單的I2項。
PCOND(MOSFET)= [(IP3- IV3)/3] × RDS(ON)× D
= [(IP3- IV3)/3] × RDS(ON)× VOUT/VIN
式中,IP 和IV 分別對應于電流波形的峰值和谷值,如圖3 所示。MOSFET 電流從IV 線性上升到IP,例如:如果IV 為0.25A,IP 為1.75A,RDS(ON)為0.1Ω,VOUT為VIN/2 (D = 0.5),基于平均電流(1A)的計算結果為:
PCOND(MOSFET) (使用平均電流)
= 12× 0.1 × 0.5 = 0.050W
利用波形積分進行更準確的計算:
PCOND(MOSFET)(使用電流波形積分進行計算)
= [(1.753- 0.253)/3] × 0.1 × 0.5 = 0.089W
或近似為78%,高于按照平均電流計算得到的結果。對于峰均比較小的電流波形,兩種計算結果的差別很小,利用平均電流計算即可滿足要求。
2.2 二極管傳導損耗
MOSFET 的傳導損耗與RDS(ON)成正比,二極管的傳導損耗則在很大程度上取決于正向導通電壓(VF)。二極管通常比MOSFET 損耗更大,二極管損耗與正向電流、VF 和導通時間成正比。由于MOSFET 斷開時二極管導通,二極管的傳導損耗(PCOND(DIODE))近似為:
PCOND(DIODE)= IDIODE(ON)× VF × (1 - D)
式中,IDIODE(ON)為二極管導通期間的平均電流。圖2 所示,二極管導通期間的平均電流為IOUT,因此,對于降壓型轉換器,PCOND(DIODE)可以按照下式估算:
PCOND(DIODE)= IOUT× VF × (1 - VOUT/VIN)
與MOSFET 功耗計算不同,采用平均電流即可得到比較準確的功耗計算結果,因為二極管損耗與I 成正比,而不是I2。
顯然,MOSFET 或二極管的導通時間越長,傳導損耗也越大。對于降壓型轉換器,輸出電壓越低,二極管產生的功耗也越大,因為它處于導通狀態的時間越長。
2.3 開關動態損耗
由于開關損耗是由開關的非理想狀態引起的,很難估算MOSFET 和二極管的開關損耗,器件從完全導通到完全關閉或從完全關閉到完全導通需要一定時間,在這個過程中會產生功率損耗。圖4 所示MOSFET 的漏源電壓(VDS)和漏源電流(IDS)的關系圖可以很好地解釋MOSFET 在過渡過程中的開關損耗,從上半部分波形可以看出,tSW(ON)和tSW(OFF)期間電壓和電流發生瞬變,MOSFET 的電容進行充電、放電。
圖4 所示,VDS降到最終導通狀態(= ID × RDS(ON))之前,滿負荷電流(ID)流過MOSFET。相反,關斷時,VDS在MOSFET 電流下降到零值之前逐漸上升到關斷狀態的最終值。開關過程中,電壓和電流的交疊部分即為造成開關損耗的來源,從圖4 可以清楚地看到這一點。
圖4開關損耗發生在MOSFET 通、斷期間的過渡過程
開關損耗隨著SMPS 頻率的升高而增大,這一點很容易理解,隨著開關頻率提高(周期縮短),開關過渡時間所占比例增大,從而增大開關損耗。開關轉換過程中,開關時間是占空比的二十分之一對于效率的影響要遠遠小于開關時間為占空比的十分之一的情況。由于開關損耗和頻率有很大的關系,工作在高頻時,開關損耗將成為主要的損耗因素。MOSFET 的開關損耗(PSW(MOSFET))可以按照圖3 所示三角波進行估算,公式如下:
PSW(MOSFET)
= 0.5 × VD × ID × (tSW(ON)+ tSW(OFF)) × fS
其中,VD 為MOSFET 關斷期間的漏源電壓,ID 是MOSFET 導通期間的溝道電流,tSW(ON)和tSW(OFF)是導通和關斷時間。對于降壓電路轉換,VIN是MOSFET 關斷時的電壓,導通時的電流為IOUT。
為了驗證MOSFET 的開關損耗和傳導損耗,圖5 給出了降壓轉換器中集成高端MOSFET 的典型波形:VDS和IDS。電路參數為:VIN= 10V、VOUT= 3.3V、IOUT= 500mA、RDS(ON)= 0.1Ω、fS= 1MHz、開關瞬變時間(tON+ tOFF)總計為38ns。
在圖5 可以看出,開關變化不是瞬間完成的,電流和電壓波形交疊部分導致功率損耗。MOSFET“導通”時(圖2),流過電感的電流IDS 線性上升,與導通邊沿相比,斷開時的開關損耗更大。
利用上述近似計算法,MOSFET 的平均損耗可以由下式計算:
PT(MOSFET)= PCOND(MOSFET)+ PSW(MOSFET)
= [(I13- I03)/3] × RDS(ON)× VOUT/VIN+ 0.5 × VIN× IOUT× (tSW(ON)+ tSW(OFF)) × fS
= [(13- 03)/3] × 0.1 × 3.3/10 + 0.5 × 10 × 0.5 × (38 × 10-9) × 1 × 106
= 0.011 + 0.095 = 106mW
這一結果與圖5 下方曲線測量得到的117.4mW 接近,注意:這種情況下,fS足夠高,PSW(MOSFET)是功耗的主要因素。
圖5降壓轉換器高端MOSFET 的典型開關周期 輸入10V、輸出3.3V (輸出電流500mA) 開關頻率為1MHz,開關轉換時間是38ns。
與MOSFET 相同,二極管也存在開關損耗。這個損耗很大程度上取決于二極管的反向恢復時間(tRR),二極管開關損耗發生在二極管從正向導通到反向截止的轉換過程。
當反向電壓加在二級管兩端時,正向導通電流在二極管上產生的累積電荷需要釋放,產生反向電流尖峰(IRR(PEAK)),極性與正向導通電流相反,從而造成V × I 功率損耗,因為反向恢復期內,反向電壓和反向電流同時存在于二極管。圖6 給出了二極管在反向恢復期間的PN 結示意圖。
圖6二極管結反偏時
需要釋放正向導通期間的累積電荷,產生峰值電流(IRR(PEAK))
了解了二極管的反向恢復特性,可以由下式估算二極管的開關損耗(PSW(DIODE)):
PSW(DIODE)= 0.5 × VREVERSE× IRR(PEAK)× tRR2× fS
其中,VREVERSE是二極管的反向偏置電壓,IRR(PEAK)是反向恢復電流的峰值,tRR2是從反向電流峰值IRR到恢復電流為正的時間。對于降壓電路,當MOSFET 導通的時候,VIN為MOSFET 導通時二極管的反向偏置電壓。
為了驗證二極管損耗計算公式,圖7 顯示了典型的降壓轉換器中PN 結的開關波形,VIN= 10V、VOUT =3.3V,測得IRR(PEAK)= 250mA、IOUT= 500mA、fS= 1MHz、 tRR2= 28ns、VF = 0.9V。利用這些數值可以得到:
該結果接近于圖7 所示測量結果358.7mW。考慮到較大的VF和較長的二極管導通周期,tRR時間非常短,開關損耗(PSW(DIODE))在二極管損耗中占主導地位。
圖7降壓型轉換器中PN 結開關二極管的開關波形 從10V 輸入降至3.3V 輸出,輸出電流為500mA 其它參數包括:1MHz 的fS,tRR2為28ns,VF = 0.9V。
提高效率
基于上述討論,通過哪些途徑可以降低電源的開關損耗呢?直接途徑是:選擇低導通電阻RDS(ON)、可快速切換的MOSFET;選擇低導通壓降VF、可快速恢復的二極管。
直接影響MOSFET 導通電阻的因素有幾點:
通常增加芯片尺寸和漏源極擊穿電壓(VBR(DSS)),由于增加了器件中的半導體材料,有助于降低導通電阻RDS(ON)。
另一方面,較大的MOSFET 會增大開關損耗。因此,雖然大尺寸MOSFET 降低了RDS(ON),但也導致小器件可以避免的效率問題。
當管芯溫度升高時,MOSFET 導通電阻會相應增大。必須保持較低的結溫,使導通電阻RDS(ON)不會過大。導通電阻RDS(ON)和柵源偏置電壓成反比,因此,推薦使用足夠大的柵極電壓以降低RDS(ON)損耗,但此時也會增大柵極驅動損耗,需要平衡降低RDS(ON)的好處和增大柵極驅動的缺陷。
MOSFET 的開關損耗與器件電容有關,較大的電容需要較長的充電時間,使開關切換變緩,消耗更多能量。米勒電容通常在MOSFET 數據資料中定義為反向傳輸電容(CRSS)或柵-漏電容(CGD),在開關過程中對切換時間起決定作用。米勒電容的充電電荷用QGD表示,為了快速切換MOSFET,要求盡可能低的米勒電容。
一般來說,MOSFET 的電容和芯片尺寸成反比,因此必須折衷考慮開關損耗和傳導損耗,同時也要謹慎選擇電路的開關頻率。對于二極管,必須降低導通壓降,以降低由此產生的損耗。
對于小尺寸、額定電壓較低的硅二極管,導通壓降一般在0.7V 到1.5V 之間。二極管的尺寸、工藝和耐壓等級都會影響導通壓降和反向恢復時間,大尺寸二極管通常具有較高的VF 和tRR,這會造成比較大的損耗。開關二極管一般以速度劃分,分為“高速”、“甚高速”和“超高速”二極管,反向恢復時間隨著速度的提高而降低。
快恢復二極管的tRR為幾百納秒,而超高速快恢復二極管的tRR為幾十納秒。低功耗應用中,替代快恢復二極管的一種選擇是肖特基二極管,這種二極管的恢復時間幾乎可以忽略,反向恢復電壓VF 也只有快恢復二極管的一半(0.4V 至1V),但肖特基二極管的額定電壓和電流遠遠低于快恢復二極管,無法用于高壓或大功率應用。
另外,肖特基二極管與硅二極管相比具有較高的反向漏電流,但這些因素并不限制它在許多電源中的應用。
然而,在一些低壓應用中,即便是具有較低壓降的肖特基二極管,所產生的傳導損耗也無法接受。比如,在輸出為1.5V 的電路中,即使使用0.5V 導通壓降VF 的肖特基二極管,二極管導通時也會產生33%的輸出電壓損耗!
為了解決這一問題,可以選擇低導通電阻RDS(ON)的MOSFET實現同步控制架構。用MOSFET 取代二極管(對比圖1 和圖2 電路),它與電源的主MOSFET 同步工作,所以在交替切換的過程中,保證只有一個導通。導通的二極管由導通的MOSFET 所替代,二極管的高導通壓降VF 被轉換成MOSFET 的低導通壓降(MOSFET RDS(ON)× I),有效降低了二極管的傳導損耗。
當然,同步整流與二極管相比也只是降低了MOSFET 的壓降,另一方面,驅動同步整流MOSFET 的功耗也不容忽略。IC數據資料 以上討論了影響開關電源效率的兩個重要因素(MOSFET 和二極管)。回顧圖 1 所示降壓電路,從數據資料中可以獲得影響控制器IC 工作效率的主要因素。
首先,開關元件集成在IC 內部,可以節省空間、降低寄生損耗。
其次,使用低導通電阻RDS(ON)的MOSFET,在小尺寸集成降壓IC (如MAX1556)中,其NMOS 和PMOS 的導通電阻可以達到0.27Ω (典型值)和0.19Ω (典型值)。
最后,使用的同步整流電路。對于500mA 負載,占空比為50%的開關電路,可以將低邊開關(或二極管)的損耗從225mW (假設二極管壓降為 1V)降至 34mW。合理選擇SMPS IC 合理選擇 SMPS IC的封裝、控制架構,并進行合理設計,可以有效提高轉換效率。
2.4 集成功率開關
功率開關集成到IC 內部時可以省去繁瑣的MOSFET 或二極管選擇,而且使電路更加緊湊,由于降低了線路損耗和寄生效應,可以在一定程度上提高效率。
根據功率等級和電壓限制,可以把MOSFET、二極管(或同步整流MOSFET)集成到芯片內部。將開關集成到芯片內部的另一個好處是柵極驅動電路的尺寸已經針對片內MOSFET 進行了優化,因而無需將時間浪費在未知的分立MOSFET 上。
靜態電流
電池供電設備特別關注IC 規格中的靜態電流(IQ),它是維持電路工作所需的電流。重載情況下(大于十倍或百倍的靜態電流IQ),IQ對效率的影響并不明顯,因為負載電流遠大于IQ,而隨著負載電流的降低,效率有下降的趨勢,因為IQ對應的功率占總功率的比例提高。這一點對于大多數時間處于休眠模式或其它低功耗模式的應用尤其重要,許多消費類產品即使在“關閉”狀態下,也需要保持鍵盤掃描或其它功能的供電,這時,無疑需要選擇具有極低IQ的電源。
電源架構對效率的提高
SMPS 的控制架構是影響開關電源效率的關鍵因素之一。這一點我們已經在同步整流架構中討論過,由于采用低導通電阻的MOSFET 取代了功耗較大的開關二極管,可有效改善效率指標。
另一種重要的控制架構是針對輕載工作或較寬的負載范圍設計的,即跳脈沖模式,也稱為脈沖頻率調制(PFM)。與單純的PWM 開關操作(在重載和輕載時均采用固定的開關頻率)不同,跳脈沖模式下轉換器工作在跳躍的開關周期,可以節省不必要的開關操作,進而提高效率。
跳脈沖模式下,在一段較長時間內電感放電,將能量從電感傳遞給負載,以維持輸出電壓。當然,隨著負載吸收電流,輸出電壓也會跌落。當電壓跌落到設置門限時,將開啟一個新的開關周期,為電感充電并補充輸出電壓。
需要注意的是跳脈沖模式會產生與負載相關的輸出噪聲,這些噪聲由于分布在不同頻率(與固定頻率的PWM 控制架構不同),很難濾除。
先進的SMPS IC 會合理利用兩者的優勢:重載時采用恒定PWM 頻率;輕載時采用跳脈沖模式以提高效率,圖1 所示IC 即提供了這樣的工作模式。
當負載增加到一個較高的有效值時,跳脈沖波形將轉換到固定PWM,在標稱負載下噪聲很容易濾除。在整個工作范圍內,器件根據需要選擇跳脈沖模式和PWM 模式,保持整體的最高效率(圖8)。
圖8 中的曲線D、E、F 所示效率曲線在固定PWM 模式下,輕載時效率較低,但在重載時能夠提供很高的轉換效率(高達98%)。如果設置在輕載下保持固定PWM 工作模式,IC 將不會按照負載情況更改工作模式。這種情況下能夠使紋波保持在固定頻率,但浪費了一定功率。重載時,維持PWM 開關操作所需的額外功率很小,遠遠低于輸出功率。另一方面,跳脈沖“空閑”模式下的效率曲線(圖8 中的A、B、C)能夠在輕載時保持在較高水平,因為開關只在負載需要時開啟。對7V 輸入曲線,在1mA 負載的空閑模式下能夠獲得高于60%的效率。
圖8降壓轉換器在PWM 和空閑(跳脈沖)模式下效率曲線
注意:輕載時,空閑模式下的效率高于PWM模式
優化SMPS
開關電源因其高效率指標得到廣泛應用,但其效率仍然受SMPS 電路的一些固有損耗的制約。
設計開關電源時,需要仔細研究造成SMPS 損耗的來源,合理選擇SMPS IC,從而充分利用器件的優勢,為了在保持盡可能低的電路成本,甚至不增加電路成本的前提下獲得高效的SMPS,工程師需要做出全面的選擇。
2.5無源元件損耗
我們已經了解MOSFET 和二極管會導致SMPS 損耗。采用高品質的開關器件能夠大大提升效率,但它們并不是唯一能夠優化電源效率的元件。
圖1 詳細介紹了一個典型的降壓型轉換器IC 的基本電路。集成了兩個同步整流MOSFET,低RDS(ON)MOSFET,效率很高。這個電路中,開關元件集成在IC 內部,已經為具體應用預先選擇了元器件。然而,為了進一步提高效率,設計人員還需關注無源元件—外部電感和電容,了解它們對功耗的影響。
2.6電感功耗阻性損耗
電感功耗包括線圈損耗和磁芯損耗兩個基本因素,線圈損耗歸結于線圈的直流電阻(DCR),磁芯損耗歸結于電感的磁特性。
DCR 定義為以下電阻公式:
式中,ρ 為線圈材料的電阻系數,l 為線圈長度,A 為線圈橫截面積。
DCR 將隨著線圈長度的增大而增大,隨著線圈橫截面積的增大而減小。可以利用該原則判斷標準電感,確定所要求的不同電感值和尺寸。對一個固定的電感值,電感尺寸較小時,為了保持相同匝數必須減小線圈的橫截面積,因此導致DCR 增大;對于給定的電感尺寸,小電感值通常對應于小的DCR,因為較少的線圈數減少了線圈長度,可以使用線徑較粗的導線。
已知DCR 和平均電感電流(具體取決于SMPS 拓撲),電感的電阻損耗(PL(DCR))可以用下式估算:
PL(DCR)= LAVG2× DCR
這里,IL(AVG)是流過電感的平均直流電流。對于降壓轉換器,平均電感電流是直流輸出電流。盡管DCR的大小直接影響電感電阻的功耗,該功耗與電感電流的平方成正比,因此,減小DCR 是必要的。
另外,還需要注意的是:利用電感的平均電流計算PL(DCR)(如上述公式)時,得到的結果略低于實際損耗,因為實際電感電流為三角波。本文前面介紹的MOSFET 傳導損耗計算中,利用對電感電流的波形進行積分可以獲得更準確的結果。更準確。當然也更復雜的計算公式如下:
PL(DCR)= (IP3- IV3)/3 × DCR
式中IP 和IV 為電感電流波形的峰值和谷值。
2.7磁芯損耗
磁芯損耗并不像傳導損耗那樣容易估算,很難估測。它由磁滯、渦流損耗組成,直接影響鐵芯的交變磁通。SMPS 中,盡管平均直流電流流過電感,由于通過電感的開關電壓的變化產生的紋波電流導致磁芯周期性的磁通變化。
磁滯損耗源于每個交流周期中磁芯偶極子的重新排列所消耗的功率,可以將其看作磁場極性變化時偶極子相互摩擦產生的“摩擦”損耗,正比于頻率和磁通密度。
相反,渦流損耗則是磁芯中的時變磁通量引入的。由法拉第定律可知:交變磁通產生交變電壓。因此,這個交變電壓會產生局部電流,在磁芯電阻上產生I2R 損耗。
磁芯材料對磁芯損耗的影響很大。SMPS 電源中普遍使用的電感是鐵粉磁芯,鐵鎳鉬磁粉芯(MPP)的損耗最低,鐵粉芯成本最低,但磁芯損耗較大。
磁芯損耗可以通過計算磁芯磁通密度(B)的最大變化量估算,然后查看電感或鐵芯制造商提供的磁通密度和磁芯損耗(和頻率)圖表。峰值磁通密度可以通過幾種方式計算,公式可以在電感數據資料中的磁芯損耗曲線中找到。
相應地,如果磁芯面積和線圈數已知,可利用下式估計峰值磁通:
這里,B 是峰值磁通密度(高斯),L 是線圈電感(亨),ΔI 是電感紋波電流峰峰值(安培),A 是磁芯橫截面積(cm2),N 是線圈匝數。
隨著互聯網的普及,可以方便地從網上下載資料、搜索器件信息,一些制造商提供了交互式電感功耗的計算軟件,幫助設計者估計功耗。使用這些工具能夠快捷、準確地估計應用電路中的功率損耗。例如,Coilcraft 提供的在線電感磁芯損耗和銅耗計算公式,簡單輸入一些數據即可得到所選電感的磁芯損耗和銅耗。
2.8電容損耗
與理想的電容模型相反,電容元件的實際物理特性導致了幾種損耗。電容在SMPS 電路中主要起穩壓、濾除輸入/輸出噪聲的作用(圖1),電容的這些損耗降低了開關電源的效率。這些損耗主要表現在三個方面:等效串聯電阻損耗、漏電流損耗和電介質損耗。
電容的阻性損耗顯而易見。既然電流在每個開關周期流入、流出電容,電容固有的電阻(RC)將造成一定功耗。漏電流損耗是由于電容絕緣材料的電阻(RL)導致較小電流流過電容而產生的功率損耗。電介質損耗比較復雜,由于電容兩端施加了交流電壓,電容電場發生變化,從而使電介質分子極化造成功率損耗。
圖9
電容損耗模型一般簡化為一個等效串聯電阻(ESR)
所有三種損耗都體現在電容的典型損耗模型中(圖9 左邊部分),用電阻代表每項損耗。與電容儲能相關的每項損耗的功率用功耗系數(DF)表示,或損耗角正切(δ)。每項損耗的DF 可以通過由電容阻抗的實部與虛部比得到,可以將每項損耗分別插入模型中。
為簡化損耗模型,圖9 中的接觸電阻損耗、漏電流損耗和電介質損耗集中等為一個等效串聯電阻(ESR)。ESR 定義為電容阻抗中消耗有功功率的部分。
推算電容阻抗模型、計算ESR (結果的實部)時,ESR 是頻率的函數。這種相關性可以在下面簡化的ESR等式中得到證明:
式中,DFR、DFL 和DFD 是接觸電阻、漏電流和電介質損耗的功耗系數。
利用這個等式,我們可以觀察到隨著信號頻率的增加,漏電流損耗和電介質損耗都有所減小,直到接觸電阻損耗從一個較高頻點開始占主導地位。在該頻點(式中沒有包括該參數)以上,ESR 因為高頻交流電流的趨膚效應趨于增大。
許多電容制造商提供ESR 曲線圖表示ESR 與頻率的關系。例如,TDK 為其大多數電容產品提供了ESR 曲線,參考這些與開關頻率對應曲線圖,得到ESR 值。
然而,如果沒有ESR 曲線圖,可以通過電容數據資料中的DF 規格粗略估算ESR。DF 是電容的整體DF (包括所有損耗),也可以按照下式估算ESR:
無論采用哪種方法來得到ESR 值,直覺告訴我們,高ESR 會降低開關電源效率,既然輸入和輸出電容在每個開關周期通過ESR 充電、放電。這導致I2× RESR功率損耗。這個損耗(PCAP(ESR))可以按照下式計算:
PCAP(ESR)= ICAP(RMS)2×RESR
式中,ICAP(RMS)是流經電容的交流電流有效值RMS。對降壓電路的輸出電容,可以采用電感紋波電流的有效值RMS。輸入濾波電容的RMS 電流的計算比較復雜,可以按照下式得到一個合理的估算值:
ICIN(RMS)= IOUT/VIN× [VOUT(VIN- VOUT)]1/2
顯然,為減小電容功率損耗,應選擇低ESR 電容,有助于SMPS 電源降低紋波電流。ESR 是產生輸出電壓紋波的主要原因,因此選擇低ESR 的電容不僅僅單純提高效率,還能得到其它好處。
一般來說,不同類型電介質的電容具有不同的ESR 等級。對于特定的容量和額定電壓,鋁電解電容和鉭電容就比陶瓷電容具有更高的ESR 值。聚酯和聚丙烯電容的ESR 值介于它們之間,但這些電容尺寸較大,SMPS 中很少使用。
對于給定類型的電容,較大容量、較低的fS能夠提供較低的ESR。大尺寸電容通常也會降低ESR,但電解電容會帶來較大的等效串聯電感。陶瓷電容被視為比較好的折中選擇,此外,電容值一定的條件下,較低的電容額定電壓也有助于減小ESR。
文章整理自網絡,如有侵權,請聯系我們!
責任編輯:PSY
原文標題:開關電源損耗的原因找到了!收藏文章立刻排查!
文章出處:【微信公眾號:EDA365】歡迎添加關注!文章轉載請注明出處。
-
開關電源
+關注
關注
6469文章
8363瀏覽量
482915 -
轉換效率
+關注
關注
0文章
22瀏覽量
10286 -
損耗
+關注
關注
0文章
197瀏覽量
16050
原文標題:開關電源損耗的原因找到了!收藏文章立刻排查!
文章出處:【微信號:eda365wx,微信公眾號:EDA365電子論壇】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論