在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

基于圖卷積的層級圖網絡用于基于點云的3D目標檢測

454398 ? 來源:學術頭條 ? 作者:徐家興 ? 2021-06-21 12:15 ? 次閱讀

論文:A Hierarchical Graph Network for 3D Object Detection on Point Clouds

由于大多數現有的點云對象檢測方法不能充分適應點云的特征(例如稀疏性),所以一些關鍵的語義信息(如物體形狀)不能被很好的捕捉到。本文提出了一種基于層級圖網絡(HGNet)的圖卷積(GConv),可以直接將點云作為輸入來預測 3D 的邊界框。形狀注意圖卷積(SA-GConv)可以通過劍魔點的位置星系來描述物體形狀,基于 SA-GConv 的 U 形網絡可以通過改進的 voting 模塊獲取多層級的特征進而生成候選,然后一個基于圖卷積的候選推理模塊考慮全局的場景語義來對邊界框進行預測。該框架在兩個大規模點云數據上的表現超過了目前最先進的模型。

論文背景

由于點云的稀疏性,一些已有的為網格形式數據設計的方法(如 CNN)在點云上的表現并不好,為解決這一問題,最近有一些對點云數據的方法被提出,例如基于投影的方法、基于體卷積的方法和基于 PointNet 的方法。前兩種試圖將點云數據嚴格轉換為網格結構數據,而后一種則在不明確考慮點的幾何位置的情況下聚合特征。

其他方法相比,PointNet++ 可以保留點的稀疏特點,因此被廣泛作為框架的骨架。當目前仍有一些未能很好解決的挑戰,首先由于沒有考慮點的相對幾何位置,因此使用 PointNet++ 作為主干忽略了一些局部形狀信息。其次,框架的結構沒有充分利用多級語義,這可能會忽略一些有助于目標檢測的信息。

本文提出了一個基于圖卷積(GCONV)的層級圖網絡(HGNet)用于基于點云的 3D 目標檢測。HGNet 包含三部分:一個基于圖卷積的 U 形網絡(GUnet)、一個候選生成器以及一個候選推理模塊(ProRe Module)。基于層級圖網絡(HGNet)的圖卷積

整個 HGNet 以端到端的方式進行培訓。在本文的框架中,點云的局部形狀信息、多級語義和全局場景信息(候選的特征)已被層級圖模型充分捕獲、聚合和合并,充分考慮了點云數據的特征。

本文的主要貢獻如下:

(A)開發了一種新的層級圖網絡(HGNet),用于在點云上進行 3D 對象檢測,其表現好于已有方法。

(B)提出了一種新穎的 SA-(De)GConv,它可以有效地聚合特征并捕獲點云中對象的形狀信息。

(C)構建了一個新的 GU-net,用于生成多級特征,這對于 3D 對象檢測至關重要。

(D)利用全局信息,ProRe 模塊通過對候選進行推理來提高效果。

論文模型

pIYBAF-cV8yALlh9AAKzXXorTzM753.jpg

融合采樣

3D 目標檢測有基于點和基于體素兩種框架,前者更加耗時,由候選生成與預測細化兩個階段組成。

在第一個階段,SA 用于降采樣以獲得更高的效率以及擴大感受野,FP 用來為降采樣過程中丟掉的點傳播特征。在第二階段,一個優化模塊最優化 RPN 的結果以獲得更準確的預測。SA 對于提取點的特征是必需的。但 FP 和優化模塊會限制效率。

形狀注意圖卷積

點云通常不能清楚地表示出物體的形狀,可以使用其相鄰點的相對幾何位置來描述點周圍的局部形狀。本文介紹了一種新穎的形狀注意圖卷積,它通過對點的幾何位置建模來捕獲對象形狀。

對于一個點集 X,其中每一個點由其集合位置 p_i 以及 D 維的特征 f_i 組成,我們想要生成一個 X’,本文設計了圖卷積用于聚合從 X 到 X’ 的特征。與 PointNet++的采樣層相類似,本文首先從 n 個點中采樣 n’ 個點,通常 K 最近鄰(KNN)被用來在采樣中保留局部信息將其作為中心點特征。

pIYBAF-cV86ABApMAAA25BZLxR8713.jpg

其中 g 表示 i 和 j 的相對位置,通過一個卷積將三維變為一維,f 是 mlp,然后二者的乘積就是中心點的 knn,其中最大的作為 i 的特征。形狀注意操作不同于簡單的基于 mlp 的操作主要就是因為這個 g 函數。雖然形式上沒有 attention 中的 softmax 這樣的歸一化,但是 g 的輸出就和 attention 一樣,每個點的 weights,然后對應的乘以特征。

o4YBAF-cV9iAADYDAAfuw2ITQns343.jpg

GU-net

本文設計了一個下采樣模塊,并將其重復堆疊 4 次以形成下采樣路徑,而將一個上采樣模塊重復堆疊兩次以構成上采樣方式。類似 FPN、GU-net 生成三張點特征圖的特征金字塔。下采樣使用的是 FPS,然后通過 KNN 構建局部區域,再使用 SA-GConv 更新特征,上采樣模塊的過程與下采樣模塊的過程相反,主要由 SA-GConv 執行。

pIYBAF-cV96AZ4YhAAVmh5c6fG8299.jpg

候選生成器

GU-net 生成了包含多級語義的三張點特征圖。一些先前的方法(如 VoteNet)僅使用一個特征圖進行目標預測。即使通過在上采樣過程中融合較低層的特征來計算較高層的特征,由于不同層的特征提供了各種語義,因此將多層特征一起用于候選生成會更加有益。本文提出了一種候選生成器,以改進的投票模塊作為主要結構來預測對象中心,該模型將多級特征轉換為相同的特征空間。接下來為了聚合特征,通過 FPS 保留 Np 的投票,該做法與 VoteNet 類似,從而融合多級特征以預測邊界框及其類別。

候選推理模塊

通過以上幾步,多層局部的語義信息已經被很好的捕捉到了,但全局信息還沒有很好的學到,或者說可能有些目標在點云中只體現出很小的一部分表面的點,在這樣少的信息下很難正確的將其識別出來。其推理過程為:

o4YBAF-cV-CABjbfAAAyyHHn4tE694.jpg

其中 Hp 表示候選特征 tensor,P 表示候選的相對位置

論文實驗

本文在 SUN RGB-D 和 ScanNet-V2 兩個數據集上進行了實驗。

pIYBAF-cV-SAecV-AAIQCbTGyOM690.jpg

o4YBAF-cV-mAODbPAAM3xD0AqUY930.jpg

此外,本文還進行了消融實驗以證明各模快的有效性。

o4YBAF-cV-6ALsTCAAKeSQs30fg144.jpg

結論

本文提出了一種新穎的 HGNet 框架,該框架通過層級圖建模學習語義。

具體來說,作者提出了一種新穎且輕巧的形狀注意圖卷積來捕獲局部形狀語義,該語義聚合了點的相對幾何位置的特征。基于 SA-GConv 和 SA-DeGConv 構建了 GU-net,生成了包含多級語義的特征金字塔。要素金字塔投票的點將位于相應的對象中心,并且進一步聚合多級語義以生成候選。然后使用 ProRe 模塊在候選之間合并和傳播特征,從而利用全局場景語義來提高檢測性能。最后,對邊界框和類別進行了預測。

編輯:hfy


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關推薦

    多維精密測量:半導體微型器件的2D&3D視覺方案

    精密視覺檢測技術有效提升了半導體行業的生產效率和質量保障。友思特自研推出基于深度學習平臺和視覺掃描系統的2D3D視覺檢測方案,通過9種深度學習模型、60+
    的頭像 發表于 01-10 13:54 ?53次閱讀
    多維精密測量:半導體微型器件的2<b class='flag-5'>D</b>&amp;<b class='flag-5'>3D</b>視覺方案

    C#通過Halcon實現3D重繪

    C# 通過 Halcon 實現 3D 重繪
    發表于 01-05 09:16 ?0次下載

    AI模型部署邊緣設備的奇妙之旅:目標檢測模型

    的是百度的Picodet模型,它是一種基于深度卷積網絡(DNN)的輕量級目標檢測模型,具有非常高的檢測精度,可以在低算力設備進行實時的端到端
    發表于 12-19 14:33

    卷積神經網絡的基本原理與算法

    ),是深度學習的代表算法之一。 一、基本原理 卷積運算 卷積運算是卷積神經網絡的核心,用于提取圖像中的局部特征。 定義
    的頭像 發表于 11-15 14:47 ?869次閱讀

    一種基于因果路徑的層次圖卷積注意力網絡

    機電系統中的故障檢測對其可維護性和安全性至關重要。然而,系統監測變量往往具有復雜的聯系,很難表征它們的關系并提取有效的特征。本文開發了一種基于因果路徑的層次圖卷積注意力網絡(HGCAN),以提高復雜
    的頭像 發表于 11-12 09:52 ?330次閱讀
    一種基于因果路徑的層次<b class='flag-5'>圖卷積</b>注意力<b class='flag-5'>網絡</b>

    3D霍爾傳感器在掃地機器人中用于碰撞檢測

    電子發燒友網站提供《3D霍爾傳感器在掃地機器人中用于碰撞檢測.pdf》資料免費下載
    發表于 09-06 10:26 ?0次下載
    <b class='flag-5'>3D</b>霍爾傳感器在掃地機器人中<b class='flag-5'>用于</b>碰撞<b class='flag-5'>檢測</b>

    安寶特產品 安寶特3D Analyzer:智能的3D CAD高級分析工具

    安寶特3D Analyzer包含多種實用的3D CAD高級分析工具,包括自動比對模型、碰撞檢測、間隙檢查、壁厚檢查,以及拔模和底切分析,能夠有效提升3D CAD模型
    的頭像 發表于 08-07 10:13 ?398次閱讀
    安寶特產品  安寶特<b class='flag-5'>3D</b> Analyzer:智能的<b class='flag-5'>3D</b> CAD高級分析工具

    卷積神經網絡共包括哪些層級

    卷積神經網絡(Convolutional Neural Network, CNN)是一種深度學習模型,廣泛應用于圖像識別、語音識別、自然語言處理等領域。它以卷積層為核心,通過多層
    的頭像 發表于 07-11 15:58 ?1444次閱讀

    卷積神經網絡分類方法有哪些

    卷積神經網絡(Convolutional Neural Networks,CNN)是一種深度學習模型,廣泛應用于圖像分類、目標檢測、語義分割
    的頭像 發表于 07-03 09:40 ?505次閱讀

    cnn卷積神經網絡分類有哪些

    卷積神經網絡(CNN)是一種深度學習模型,廣泛應用于圖像分類、目標檢測、語義分割等領域。本文將詳細介紹CNN在分類任務中的應用,包括基本結構
    的頭像 發表于 07-03 09:28 ?670次閱讀

    蘇州吳中區多色PCB板元器件3D視覺檢測技術

    3D視覺檢測相較于2D視覺檢測,有其獨特的優勢,不受產品表面對比度影響,精確檢出產品形狀,可以測出高度(厚度)、體積、平整度等。在實際應用中可以與2
    的頭像 發表于 06-14 15:02 ?437次閱讀
    蘇州吳中區多色PCB板元器件<b class='flag-5'>3D</b>視覺<b class='flag-5'>檢測</b>技術

    機器人3D視覺引導系統框架介紹

    通過自主開發的3D掃描儀可獲準確并且快速地獲取場景的云圖像,通過3D識別算法,可實現在對云圖中的多種目標物體進行識別和位姿估計。
    發表于 04-29 09:31 ?356次閱讀
    機器人<b class='flag-5'>3D</b>視覺引導系統框架介紹

    Nullmax提出多相機3D目標檢測新方法QAF2D

    今天上午,計算機視覺領域頂會CVPR公布了最終的論文接收結果,Nullmax感知部門的3D目標檢測研究《Enhancing 3D Object Detection with 2
    的頭像 發表于 02-27 16:38 ?1179次閱讀
    Nullmax提出多相機<b class='flag-5'>3D</b><b class='flag-5'>目標</b><b class='flag-5'>檢測</b>新方法QAF2<b class='flag-5'>D</b>

    基于深度學習的方法在處理3D進行缺陷分類應用

    背景部分介紹了3D應用領域中公開可訪問的數據集的重要性,這些數據集對于分析和比較各種模型至關重要。研究人員專門設計了各種數據集,包括用于3D
    的頭像 發表于 02-22 16:16 ?1242次閱讀
    基于深度學習的方法在處理<b class='flag-5'>3D</b><b class='flag-5'>點</b><b class='flag-5'>云</b>進行缺陷分類應用

    標注神器!AAAI&apos;24最新:第一個交互式3D目標檢測器!

    考慮到3D的稀疏性質,iDet3D設計了負點擊模擬 (NCS),通過減少誤報預測來提高準確性。還結合了兩種點擊傳播技術來充分利用用戶交互:(1) 密集點擊引導 (DCG),
    的頭像 發表于 01-16 16:08 ?569次閱讀
    標注神器!AAAI&apos;24最新:第一個交互式<b class='flag-5'>3D</b><b class='flag-5'>目標</b><b class='flag-5'>檢測</b>器!
    主站蜘蛛池模板: 久久成人网18网站| 丁香花五月婷婷| 日韩日韩| 男人天堂网在线视频| you ji z z日本人在线观看| 国产va免费精品观看| 国产黄色在线免费观看| 97伊人网| 神马午夜98| va国产| 91大神在线精品网址| 精品国产柚木在线观看| 亚洲狠狠婷婷综合久久久图片| 亚洲 欧美 自拍 另类| 三级电影在线观看视频| 在线免费观看一级毛片| 怡红院亚洲怡红院首页| 四虎海外在线永久免费看| 欧美色香蕉| 国产高清视频在线播放www色| 一级特黄aaa大片免费看| 日韩 ed2k| 午夜看黄| 海棠高h粗暴调教双性男男| 亚洲国产成人久久三区| 欧美天堂色| www.4虎| 久久777国产线看观看精品卜| 操熟逼| 亚洲成人三级电影| 免费观看黄a一级视频日本| www.色播| 国产理论视频| 韩漫免费网站无遮挡羞羞漫画| 四虎影视免费观看| 好色999| 国产男人女人做性全过程视频| 亚洲午夜免费| 51精品国产| 99久久99久久精品国产| 欧美一级特黄乱妇高清视频|