在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

如何在BERT中引入知識圖譜中信息

深度學習自然語言處理 ? 來源:深度學習自然語言處理 ? 作者:深度學習自然語言 ? 2020-11-03 17:52 ? 次閱讀

引言

隨著BERT等預訓練模型橫空出世,NLP方向迎來了一波革命,預訓練模型在各類任務上均取得了驚人的成績。隨著各類預訓練任務層出不窮,也有部分研究者考慮如何在BERT這一類模型中引入或者強化知識圖譜中包含的信息,進而增強BERT對背景知識或常識信息的編碼能力。本文主要關注于如何在BERT中引入知識圖譜中信息,并survey了目前已公布的若干種方法,歡迎大家批評和交流。

ERNIE: Enhanced Language Representation with Informative Entities

論文鏈接:https://www.aclweb.org/anthology/P19-1139.pdf

這篇論文來自于清華劉知遠老師和華為劉群老師,已被ACL2019所錄取,是較早的考慮將知識引入預訓練模型的論文。

該論文主要利用了從知識庫中提出的高信息量的實體信息,通過特殊的語義融合模塊,來增強文本中對應的表示。首先本文通過實體鏈接算法,將Wikipedia文本中包含的實體與Wikidata中的實體庫構建關聯,然后采用TransE算法,對Wikidata中的實體embedding進行預訓練,進而得到其初始的表示;之后本文采用一個特殊的信息融合結構,其模型框架如下圖所示:

從圖中可以看出,ERNIE的框架分為以下兩部分,T-Encoder和K-Encoder,以上兩部分均使用BERT的Transformer框架,并利用其中的參數進行初始化。其中Wikipedia中的每一句話首先被輸入給T-Encoder,其通過Transformer的多頭注意力機制對文本中的信息進行編碼;之后輸出的表示與其內部包含的實體被一起輸入給了K-Encoder,其內部包含兩個多頭注意力層以分別對文本信息和實體信息進行編碼;編碼后實體信息會得到兩種表示——詞級別和實體級別的表示,ERNIE通過將兩種信息concat之后輸入給DNN層,進而融合得到知識增強的表示;為進一步促進該部分融合,ERNIE采用一個denoising entity auto-encoder (dEA)來對該部分進行監督,其采用類似于BERT中的Mask機制,基于一定的概率對其中的實體進行mask或替換,然后還原該部分實體信息。

在采用以上過程預訓練后,本文將ERNIE在多個NLP任務上進行微調,并在多個數據集上獲得了State-of-the-art的結果。

K-BERT: Enabling Language Representation with Knowledge Graph

論文鏈接:https://arxiv.org/pdf/1909.07606v1.pdf

這篇論文來自于北大和騰訊,已被AAAI2020所錄取,是較早的考慮將知識圖譜中的邊關系引入預訓練模型的論文。

該論文主要通過修改Transformer中的attention機制,通過特殊的mask方法將知識圖譜中的相關邊考慮到編碼過程中,進而增強預訓練模型的效果。首先本文利用CN-DBpedia、HowNet和MedicalKG作為領域內知識圖譜,對每一個句子中包含的實體抽取其相關的三元組,這里的三元組被看作是一個短句(首實體,關系,尾實體),與原始的句子合并一起輸入給Transformer模型;針對該方法,本文采用基于可見矩陣的mask機制,如下圖所示:

從圖中可以看出,輸入的句子增加了許多三元組構成的短句,在每次編碼時針對每一個詞,模型通過可視矩陣(0-1變量)來控制該詞的視野,使其計算得到的attention分布不會涵蓋與其無關的詞,進而模擬一個句子樹的場景;由于該策略僅僅改動了mask策略,故其可以支持BERT,RoBERTa等一系列模型;該方法最終在8個開放域任務和4個特定領域任務下取得了一定的提升。

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation

論文鏈接:https://arxiv.org/pdf/1911.06136.pdf

這篇論文來源于清華和Mila實驗室,其主要關注于如何使用BERT增強知識圖譜embedding,并幫助增強對應的表示。

該論文主要通過添加類似于TransE的預訓練機制來增強對應文本的表示,進而增強預訓練模型在一些知識圖譜有關任務的效果。首先本文基于Wikipedia和Wikidata數據集,將每個entity與對應的維基百科描述相鏈接,則每個entity均獲得其對應的文本描述信息;之后對于每一個三元組——<頭實體,關系,尾實體>,本文采用基于BERT對encoder利用entity的描述信息,對每個實體進行編碼,如下圖所示:

從圖中可以看出,在通過encoder得到頭實體和尾實體對應的表示之后,本文采用類似于TransE的訓練方法,即基于頭實體和關系預測尾實體;此外本文還采用BERT經典的MLM損失函數,并使用RoBERTa的原始參數進行初始化;最終本文提出的方法在知識圖譜補全和若干NLP任務上均帶來了增益。

CoLAKE: Contextualized Language and Knowledge Embedding

論文鏈接:https://arxiv.org/pdf/2010.00309.pdf

這篇論文來源于復旦和亞馬遜,其主要關注于如何使用知識圖譜以增強預訓練模型的效果。

本文首先將上下文看作全連接圖,并根據句子中的實體在KG上抽取子圖,通過兩個圖中共現的實體將全連接圖和KG子圖融合起來;然后本文將該圖轉化為序列,使用Transformer進行預訓練,并在訓練時采用特殊的type embedding來表示實體、詞語與其他子圖信息,如下圖所示:

最終本文將文本上下文和知識上下文一起用MLM進行預訓練,將mask的范圍推廣到word、entity和relation;為訓練該模型,本文采用cpu-gpu混合訓練策略結合負采樣機制減少訓練時間;最終本文提出的方法在知識圖譜補全和若干NLP任務上均帶來了增益。

Exploiting Structured Knowledge in Text via Graph-Guided Representation Learning

論文鏈接:https://arxiv.org/pdf/2004.14224.pdf

這篇論文來源于悉尼科技大學和微軟,其主要關注于如何使用知識圖譜增強預訓練模型。

本文思路比較簡潔,其提出了一個基于entity的mask機制,結合一定的負采樣機制來增強模型。首先對于輸入的每一句話,本文首先進行實體鏈接工作,得到其中的entity,并從知識圖譜conceptnet和freebase中召回其鄰接的三元組;本文利用一個特殊的權重,防止在mask時關注于句子中過于簡單和過于難的entity,這樣模型在entity-level MLM訓練時就關注于較為適合學習的信息;此外本文還引入了基于知識圖譜的負采樣機制,其利用relation來選擇高質量的負例,以進一步幫助訓練;最終本文提出的方法在知識圖譜補全和若干NLP任務上均帶來了增益。

K-ADAPTER: Infusing Knowledge into Pre-Trained Models with Adapters

論文鏈接:https://arxiv.org/pdf/2002.01808v3.pdf

這篇論文來源于復旦和微軟,其考慮自適應的讓BERT與知識相融合。

這篇論文考慮如何通過不同的特殊下游任務來幫助向預訓練模型融入任務相關的知識。首先本文針對不同的預訓練任務,定義了對應的adapter;在針對具體的下游任務進行fine-tune時,可以采用不同的adapter來針對性的加入特征,進而增強其效果;如下圖所示:

基于該思想,本文提出了兩種特殊的adapter,分別利用factor knowledge和linguistic knowledge;針對這兩個adapter,本文提出了針對entity之間的關系分類任務和基于依存關系的分類任務;再fine-tune階段,兩個adapter得到的特征可以與BERT或RoBERTa得到的特征一起拼接來進行預測,該策略在三個知識驅動數據集上均取得了較大增益。

Integrating Graph Contextualized Knowledge into Pre-trained Language Models

論文鏈接:https://arxiv.org/pdf/1912.00147.pdf

這篇論文來自于華為和中科大,其主要關注于如何將上下文有關的知識信息加入到預訓練模型里。

這篇論文的思想類似于graph-BERT和K-BERT,其針對給出文本首先檢索返回相關的entity三元組,再在知識圖譜上搜集其相鄰的節點以構成子圖;然后將該子圖轉換成序列的形式,輸入給傳統的Transformer模型(類似graph-BERT),通過特殊的mask來約束注意力在相鄰節點上(K-BERT);最后用類似于ERNIE的策略將子圖中的信息加入到Transformer中;最終該模型在下游的幾個醫療相關數據集上取得了增益。

JAKET: Joint Pre-training of Knowledge Graph and Language Understanding

論文鏈接:https://arxiv.org/pdf/2010.00796.pdf

這篇論文來自于CMU和微軟,其主要關注于如何同時對知識圖譜和語言模型一起預訓練。

本文使用RoBERTa作為語言模型對文本進行編碼,增加了relation信息的graph attention模型來對知識圖譜進行編碼;由于文本和知識圖譜的交集在于其中共有的若干entity,本文采用一種交替訓練的方式來幫助融合兩部分的知識,如下圖所示:

可以看出,語言模型得到的信息會首先對輸入文本以及entity/relation的描述信息進行編碼,以得到對應的表示;之后語言模型得到的entity embedding會被送給R-GAT模型以聚合鄰居節點的信息,以得到更強的entity表示;然后該部分信息會被輸入給語言模型繼續融合并編碼,以得到強化的文本表示信息;為了訓練該模型,本文還采用embedding memory機制來控制訓練時梯度的更新頻率和優化目標的權重,并提出四種特殊的損失函數來進行預訓練;最終本文提出的模型在多個知識驅動的下游任務均取得較好效果。

責任編輯:xj

原文標題:BERT meet Knowledge Graph:預訓練模型與知識圖譜相結合的研究進展

文章出處:【微信公眾號:深度學習自然語言處理】歡迎添加關注!文章轉載請注明出處。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 深度學習
    +關注

    關注

    73

    文章

    5503

    瀏覽量

    121170
  • 知識圖譜
    +關注

    關注

    2

    文章

    132

    瀏覽量

    7709
  • 訓練模型
    +關注

    關注

    1

    文章

    36

    瀏覽量

    3826

原文標題:BERT meet Knowledge Graph:預訓練模型與知識圖譜相結合的研究進展

文章出處:【微信號:zenRRan,微信公眾號:深度學習自然語言處理】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    傳音旗下人工智能項目榮獲2024年“上海產學研合作優秀項目獎”一等獎

    和華東師范大學聯合申報的“跨語言知識圖譜構建與推理技術研究及應用”項目憑借創新性和技術先進性榮獲一等獎。該項目成功突破了多形態信息抽取技術、跨語言知識圖譜對齊技術和知識問答對
    的頭像 發表于 12-16 17:04 ?325次閱讀
    傳音旗下人工智能項目榮獲2024年“上海產學研合作優秀項目獎”一等獎

    傳音旗下小語種AI技術榮獲2024年“上海產學研合作優秀項目獎”一等獎

    和華東師范大學聯合申報的“跨語言知識圖譜構建與推理技術研究及應用”項目憑借創新性和技術先進性榮獲一等獎。 該項目成功突破了多形態信息抽取技術、跨語言知識圖譜對齊技術和知識問答對話技術,
    的頭像 發表于 12-16 16:21 ?321次閱讀
    傳音旗下小語種AI技術榮獲2024年“上海產學研合作優秀項目獎”一等獎

    光譜看譜鏡分析圖譜

    火電廠材質分析看譜鏡圖譜
    發表于 12-06 15:02 ?0次下載

    達實智能入選《2025年國AIoT產業全景圖譜

    近日,由物聯網智庫、智次方研究院主辦的“2025國AIoT產業年會暨萬物智聯2.0前瞻洞察大典”在深圳深鐵皇冠假日酒店隆重召開。達實成功入選《2025年國AIoT產業全景圖譜》,并榮獲AIoT新維獎?杰出案例獎。
    的頭像 發表于 11-25 13:40 ?363次閱讀

    58大新質生產力產業鏈圖譜

    大躍升 的先進生產力。 58大新質生產力產業鏈圖譜 01 元宇宙產業圖譜 02 算力產業圖譜 03 數商產業圖譜 04 人形機器人產業圖譜
    的頭像 發表于 11-09 10:16 ?364次閱讀
    58大新質生產力產業鏈<b class='flag-5'>圖譜</b>

    三星自主研發知識圖譜技術,強化Galaxy AI用戶體驗與數據安全

    據外媒11月7日報道,三星電子全球AI中心總監Kim Dae-hyun近日透露,公司正致力于自主研發知識圖譜技術,旨在進一步優化Galaxy AI的功能,提升其易用性,并加強用戶數據的隱私保護。
    的頭像 發表于 11-07 15:19 ?619次閱讀

    何在Altium Designer快速定位器件

    想知道如何在Altium Designer快速定位器件嘛?
    的頭像 發表于 10-12 09:28 ?3082次閱讀
    如<b class='flag-5'>何在</b>Altium Designer<b class='flag-5'>中</b>快速定位器件

    易智瑞榮獲“信息技術應用創新工作委員會技術活動單位”

    布的GeoScene V4.1在自主創新方面的新特性、新能力,重點展示GeoScene V4.1在三維、人工智能、影像、知識圖譜等方面的新成果。
    的頭像 發表于 10-11 10:41 ?449次閱讀
    易智瑞榮獲“<b class='flag-5'>信息</b>技術應用創新工作委員會技術活動單位”

    放大電路引入反饋的作用

    反饋,簡而言之,就是將系統的輸出信號重新引入到輸入端的過程。在放大電路,這通常意味著將輸出電壓或電流的一部分通過反饋網絡送回輸入端。這樣做的目的是利用輸出信號的信息來調節和控制輸入信號,進而
    的頭像 發表于 10-04 17:39 ?525次閱讀
    放大電路<b class='flag-5'>中</b><b class='flag-5'>引入</b>反饋的作用

    三星電子將收購英國知識圖譜技術初創企業

    在人工智能技術日新月異的今天,三星電子公司再次展現了其前瞻性的戰略布局與技術創新實力。近日,三星正式宣布完成了對英國領先的人工智能(AI)與知識圖譜技術初創企業Oxford Semantic Technologies的收購,此舉標志著三星在提升設備端AI能力、深化個性化用戶體驗方面邁出了重要一步。
    的頭像 發表于 07-18 14:46 ?527次閱讀

    知識圖譜與大模型之間的關系

    在人工智能的廣闊領域中,知識圖譜與大模型是兩個至關重要的概念,它們各自擁有獨特的優勢和應用場景,同時又相互補充,共同推動著人工智能技術的發展。本文將從定義、特點、應用及相互關系等方面深入探討知識圖譜與大模型之間的關系。
    的頭像 發表于 07-10 11:39 ?1067次閱讀

    何在idf工程引入mdf WiFi-Mesh函數?

    我原先在idf下開發好的程序,如何引入mdf進行開發?需要用到WiFi-Mesh,看了下mdf下的例程是比較合適的,而idf下的wifi-mesh例程很粗略,想把mdf的例程移植到我原來的idf工程里面去
    發表于 06-28 14:59

    何在啟動軟件時將信息存儲在非易失性存儲器,以便在COLD PORST之后恢復?

    何在啟動軟件時將信息存儲在非易失性存儲器,以便在 COLD PORST 之后恢復?
    發表于 05-21 07:55

    利用知識圖譜與Llama-Index技術構建大模型驅動的RAG系統(下)

    對于語言模型(LLM)幻覺,知識圖譜被證明優于向量數據庫。知識圖譜提供更準確、多樣化、有趣、邏輯和一致的信息,減少了LLM中出現幻覺的可能性。
    的頭像 發表于 02-22 14:13 ?1213次閱讀
    利用<b class='flag-5'>知識圖譜</b>與Llama-Index技術構建大模型驅動的RAG系統(下)

    知識圖譜基礎知識應用和學術前沿趨勢

    知識圖譜(Knowledge Graph)以結構化的形式描述客觀世界概念、實體及其關系。是融合了認知計算、知識表示與推理、信息檢索與抽取、自然語言處理、Web技術、機器學習與大數據挖
    的頭像 發表于 01-08 10:57 ?956次閱讀
    <b class='flag-5'>知識圖譜</b>基礎<b class='flag-5'>知識</b>應用和學術前沿趨勢
    主站蜘蛛池模板: 免费一级毛片正在播放| 国产综合在线播放| 日本老师69xxxxxxxxx| 中国成熟xxx视频| 日本三级在线| 一级片在线视频| 视频在线观看h| 四虎永久在线精品影院| 国产乱辈通伦影片在线播放亚洲| 免费观看欧美一级高清| 成人中文字幕一区二区三区| 男人天堂伊人| 免费理论片在线观看播放| 国产精品久久久久免费| 猛操网| 日本又粗又长一进一出抽搐| 日本不卡视频在线| 天堂自拍| 色吧综合网| 久久婷婷五综合一区二区| 人人干人| 亚洲色图图片| www成年人视频| 操久久久| 免费网站日本| 久操中文| 午夜欧美福利| 天天插天天狠| 黑色丝袜在丝袜福利国产| 毛片啪啪| 免费一级毛片正在播放| 免费观看黄色网页| 国产精品爱啪在线线免费观看 | 免费毛片网站| 你懂的免费在线观看| 国产小视频在线观看免费| 在线二区| 精品噜噜噜噜久久久久久久久| 爱综合网| 青青草国产三级精品三级| 奇米网狠狠干|