一、壓電效應及壓電材料
1、壓電效應
壓電材料是指受到壓力作用在其兩端面會出現電荷的一大類單晶或多晶的固體材料,它是進行能量轉換和信號傳遞的重要載體。最早報道材料具有壓電特性的是法國物理學家居里兄弟,1880年他們發現把重物放在石英晶體上,晶體某些表面會產生電荷,電荷量與壓力成正比,并將其成為壓電效應。壓電效應可分為正壓電效應和逆壓電效應兩種。某些介電體在機械力作用下發生形變,使介電體內正負電荷中心發生相對位移而極化,以致兩端表面出現符號相反的束縛電荷,其電荷密度與應力成比例。這種由“壓力”產生“電”的現象稱為正壓電效應。反之,如果將具有壓電效應的介電體置于外電場中,電場使介質內部正負電荷位移,導致介質產生形變。這種由“電”產生“機械變形”的現象稱為逆壓電效應。
2、壓電材料
(1)壓電單晶
壓電單晶是指按晶體空間點陣長程有序生長而成的晶體。這種晶體結構無對稱中心,因此具有壓電性。如石英晶體、鎵酸鋰、鍺酸鋰、鍺酸鈦以及鐵晶體管鈮酸鋰、鉭酸鋰等。壓電單晶材料的生長方法包括水熱法、提拉法、坩堝下降法和泡生法等。
(2)壓電陶瓷
壓電陶瓷則泛指壓電多晶體, 是指用必要成份的原料進行混合、成型、高溫燒結,由粉粒之間的固相反應和燒結過程而獲得的微細晶粒無規則集合而成的多晶體, 具有壓電性的陶瓷稱壓電陶瓷。壓電陶瓷材料具有良好的耐潮濕、耐磨和耐高溫性能,硬度較高,物理和化學性能穩定。壓電陶瓷材料包括鈦酸鋇BT、鋯鈦酸鉛PZT、改性鋯鈦酸鉛、偏鈮酸鉛、鈮酸鉛鋇鋰PBLN、改性鈦酸鉛PT等。
(3)壓電薄膜
壓電薄膜材料是原子或原子團經過或濺射的方法沉積在襯底上而形成的,其結構可以是費靜態、多晶甚至是單晶。壓電薄膜制備的器件不需要使用價格昂貴的壓電單晶,只要在襯底上沉積一層很薄的壓電材料,因而具有經濟和省料的特點。而且制備薄膜過程中按照一定取向來沉積薄膜,不需要進行極化定向和切割等工藝。另外,利用壓電薄膜制備的器件應用范圍廣泛、制作簡單、成本低廉,同時其能量轉換效率高,還能與半導體工藝集成,符合壓電器件微型化和集成化的趨勢。
壓電薄膜的主要制備方法
目前應用較為廣泛的壓電薄膜材料主要有氮化鋁AlN)、氧化鋅(ZnO)和 PZT系列的壓電薄膜材料。性能比較如下表所示:
AlN是一種具有纖鋅礦結構的重要III-V族氮化物,其結構穩定性高。與ZnO和PZT壓電薄膜相比較,AlN薄膜的壓電響應較低,但是其優點在于AlN薄膜的聲波速較高,這就使得AlN薄膜可以用來制備高頻下如GHz的濾波器件和高頻諧振器等。此外,AlN壓電薄膜是一種很好的高溫材料,因為AlN材料的壓電性在溫度為1200℃時依舊良好,所以AlN壓電薄膜器件能夠適應高溫環境,該薄膜材料還具有很高的化學穩定性,在腐蝕性工作環境下薄膜器件依舊能夠正常工作而不受影響。AlN材料還具有良好的熱傳導性能,在器件工作時會及時將產生的熱量傳導出去,不會因為產熱過多而減少器件的使用壽命。由于AlN薄膜材料的多方面性能優點使其得到了相應的應用。例如基于AlN壓電薄膜的體聲波諧振器(FBAR),其諧振頻率可達GHz,在通訊領域得到了廣泛的應用。
ZnO與AlN一樣具有纖鋅礦結構。高質量高c軸擇優取向的ZnO具有很好的壓電性能。ZnO晶格常數與硅襯底相差不多,所以晶格匹配度高。目前制備潔凈度高的ZnO薄膜技術已經很成熟。然而,ZnO很大的缺陷在于難以用于惡劣的環境,由于其是兩性氧化物,所以抗腐蝕的能力很弱,這就影響了其在一些特定環境下的應用。
鋯鈦酸鉛是由PbTiO3和PbZrO3組成的二元系固溶體,其化學式為Pb(Zr1-xTix)O3,簡寫為PZT。PbTiO3和PbZrO3均是ABO3型鈣鈦礦結構,所以PZT也是鈣鈦礦結構。此外,還可以在PZT中添加其它微量元素(如鈮、銻、錫、錳、鎢等)來改善性能。
PZT薄膜是目前應用最為廣泛的壓電材料之一,就是高壓電特性的PZT材料已經被大量應用在了揚聲器、超聲成像探頭、超聲換能器、蜂鳴器和超聲電機等電子器件中。最早人們利用溶膠-凝膠法制備了PZT薄膜,并在MEMS器件中進行實際應用,如驅動器、換能器和壓力傳感器。隨著薄膜制備技術的提高,開始涌現出多種制備手段,并且也利用多種技術制備了PZT壓電薄膜,如磁控濺射技術、脈沖激光沉積技術(PLD)、化學氣相沉積(CVD)和金屬化合物氣相沉積技術等。PZT壓電薄膜與非鐵電的ZnO材料相比較,最重要的優點就是PZT材料具有鐵電性,在一定的外加電場和溫度條件下,PZT材料內部電疇發生轉動,自發極化方向重新確定,這樣使得在多晶材料中原本隨機排列的極化軸通過電場的作用取向排列而產生了凈壓電響應。所以PZT材料的壓電性能要高于ZnO材料,是ZnO的兩倍以上。在光電子學、微電子學、微機電系統和集成光學等領域,PZT薄膜已經被廣泛應用。
PZT薄膜材料具有高介電常數、低的聲波速度、高的耦合系數,橫向壓電系數和縱向壓電系數在三者之中最高,也被視為三者之中最為有前途的壓電薄膜材料,但是PZT薄膜制備過程復雜,與MEMS工藝兼容性較差,制備過程須嚴格控制各組分的比例,壓電特性受到晶向、成分配比、顆粒度等因素影響,重復制備高質量的PZT薄膜存在較大困難。目前工業界最常采用的壓電材料仍以AlN為主流。
-
傳感器
+關注
關注
2552文章
51336瀏覽量
755498 -
壓電傳感
+關注
關注
0文章
3瀏覽量
5593
發布評論請先 登錄
相關推薦
評論