在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

超分辨技術(shù)在RTC領(lǐng)域應(yīng)用面臨的機(jī)遇與挑戰(zhàn)

h1654155282.3538 ? 來源:博客園 ? 作者:博客園 ? 2021-01-07 09:45 ? 次閱讀

近年來,隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,基于AI的超分辨技術(shù)在圖像恢復(fù)和圖像增強(qiáng)領(lǐng)域呈現(xiàn)出廣闊的應(yīng)用前景,受到了學(xué)術(shù)界和工業(yè)界的關(guān)注和重視。但是,在RTC視頻領(lǐng)域中,很多AI算法并不能滿足實(shí)際場景下的應(yīng)用需求。本文將著眼于AI技術(shù)從研究到部署的落地問題,分享超分辨技術(shù)在RTC領(lǐng)域落地應(yīng)用所面臨的機(jī)遇與挑戰(zhàn)。

一、超分辨技術(shù)概述

1. 超分辨技術(shù)的提出

超分辨這一概念最早是在20世紀(jì)60年代由Harris和Goodman提出的,是指從低分辨率圖像,通過某種算法或模型生成高分辨圖像的技術(shù),并且盡可能地恢復(fù)出更多細(xì)節(jié)信息,也稱為頻譜外推法。但是在研究初期,頻譜外推法只是用于一些假設(shè)條件下的仿真,并沒有得到廣泛的認(rèn)可;直到單張圖像的超分辨方法提出后,超分辨技術(shù)才開始得到廣泛的研究和應(yīng)用。目前,它已經(jīng)成為圖像增強(qiáng)乃至計(jì)算機(jī)視覺領(lǐng)域的重要研究方向。

2.超分辨技術(shù)的分類

單張圖像的超分辨方法根據(jù)原理不同,可以分為基于插值、基于重構(gòu)和基于學(xué)習(xí)的方法。前面兩種方法分別由于算法原理簡單以及應(yīng)用場景受限,在實(shí)際場景中的超分辨效果并不理想;基于學(xué)習(xí)的方法,是實(shí)際效果最好的超分辨方法,其核心包括兩個(gè)部分:算法模型的建立,以及訓(xùn)練集的選取。根據(jù)算法模型和訓(xùn)練集,基于學(xué)習(xí)的方法又可以分為傳統(tǒng)學(xué)習(xí)方法和深度學(xué)習(xí)方法。一般來說,傳統(tǒng)學(xué)習(xí)方法的算法模型比較簡單,訓(xùn)練集也比較小。深度學(xué)習(xí)方法一般是指采用大量數(shù)據(jù)訓(xùn)練的卷積神經(jīng)網(wǎng)絡(luò)方法,也是目前學(xué)術(shù)界研究的熱點(diǎn)。因此接下來我將重點(diǎn)介紹基于深度學(xué)習(xí)的超分辨方法的發(fā)展過程。

3. DL-based SR

SRCNN是深度學(xué)習(xí)方法在超分辨問題的首次嘗試,是一個(gè)比較簡單的卷積網(wǎng)絡(luò),由3個(gè)卷積層構(gòu)成,每個(gè)卷積層負(fù)責(zé)不同的職能。第一個(gè)卷積層的作用主要是負(fù)責(zé)提取高頻特征,第二個(gè)卷積層則負(fù)責(zé)完成從低清特征到高清特征的非線性映射,最后一個(gè)卷積層的作用是重建出高分辨率的圖像。SRCNN的網(wǎng)絡(luò)結(jié)構(gòu)比較簡單,超分辨效果也有待改善,不過它確立了深度學(xué)習(xí)方法在處理超分辨這類問題時(shí)的基本思想。后來的深度學(xué)習(xí)方法,基本都遵循這一思想去進(jìn)行超分辨的重建。

后來的 ESPCN、FSRCNN等網(wǎng)絡(luò)基于SRCNN進(jìn)行了一些改進(jìn),網(wǎng)絡(luò)層數(shù)仍然比較淺,卷積層數(shù)不會超過10,超分辨的效果也不是特別理想。因?yàn)樵诋?dāng)時(shí),深度卷積網(wǎng)絡(luò)的訓(xùn)練是存在問題的。一般對于卷積神經(jīng)網(wǎng)絡(luò)來說,當(dāng)網(wǎng)絡(luò)層數(shù)增加的時(shí)候,性能也會增加,但在實(shí)際應(yīng)用中,人們發(fā)現(xiàn)當(dāng)網(wǎng)絡(luò)層數(shù)增加到了一定程度,由于反向傳播原理,就會出現(xiàn)梯度消失的問題,導(dǎo)致網(wǎng)絡(luò)收斂性變差,模型性能降低。這個(gè)問題直到ResNet提出殘差網(wǎng)絡(luò)結(jié)構(gòu)之后,才得到比較好的解決。

VDSR是殘差網(wǎng)絡(luò)以及殘差學(xué)習(xí)思想在超分辨問題上的首次應(yīng)用,將超分辨網(wǎng)絡(luò)的層數(shù)首次增加到了20層,優(yōu)點(diǎn)是利用殘差學(xué)習(xí)的方式,直接學(xué)習(xí)殘差特征,網(wǎng)絡(luò)收斂會比較快,超分辨效果也更好。后來一些卷積神經(jīng)網(wǎng)絡(luò)提出了更復(fù)雜的結(jié)構(gòu), 比如SRGAN提出使用生成式對抗網(wǎng)絡(luò)來生成高分辨的圖像,SRGAN由2部分組成,一個(gè)是生成網(wǎng)絡(luò),另一個(gè)是判別網(wǎng)絡(luò)。生成網(wǎng)絡(luò)的作用是根據(jù)一張低分辨率的圖像來生成一張高分辨的圖像,而判別網(wǎng)絡(luò)的作用是將生成網(wǎng)絡(luò)生成的高分辨圖像判定為假,這樣網(wǎng)絡(luò)在訓(xùn)練的時(shí)候,生成網(wǎng)絡(luò)和判定網(wǎng)絡(luò)兩者之間不斷博弈,最終達(dá)到平衡,從而生成細(xì)節(jié)紋理比較逼真的高分辨圖像,具有更好的主觀視覺效果。其他深度卷積網(wǎng)絡(luò)方法比如SRDenseNet、EDSR、RDN,使用了更復(fù)雜的網(wǎng)絡(luò)結(jié)構(gòu),網(wǎng)絡(luò)的卷積層越來越深,在單張圖像上的超分辨效果也越來越好。

超分辨技術(shù)發(fā)展的總體趨勢,基本上可以概括為從傳統(tǒng)方法,到深度學(xué)習(xí)方法,從簡單的卷積網(wǎng)絡(luò)方法到深度殘差網(wǎng)絡(luò)方法。在這個(gè)過程中,超分辨模型結(jié)構(gòu)越來越復(fù)雜,網(wǎng)絡(luò)層次越來越深,單張圖像的超分辨效果也越來越好,不過這也會有一定的問題。

二、實(shí)時(shí)視頻任務(wù)的需求與SR的挑戰(zhàn)

在RTC領(lǐng)域,對于視頻處理任務(wù)來說,大多是直播和會議等即時(shí)通信場景,對算法的實(shí)時(shí)性要求比較高,所以視頻處理算法的實(shí)時(shí)性是優(yōu)先考慮的。然后是算法的實(shí)用性,由于用戶在使用直播或會議時(shí),攝像頭采集到的視頻質(zhì)量有時(shí)比較低下,可能包含很多噪點(diǎn);另外視頻在編碼傳輸時(shí)會先進(jìn)行壓縮,壓縮的過程也會導(dǎo)致圖像畫質(zhì)退化,所以RTC實(shí)際應(yīng)用場景比較復(fù)雜,而很多視頻處理方法,比如超分辨算法在研究中的是比較理想的場景。最后,如何提升用戶尤其是移動(dòng)端用戶的體驗(yàn),減少算法的計(jì)算資源占用,適用更多終端和設(shè)備,也是視頻任務(wù)所必須考慮的。

對于這些需求,目前的超分辨方法尤其是基于深度學(xué)習(xí)的超分辨方法是存在很多問題的。目前學(xué)術(shù)界關(guān)于超分辨的研究大多還是局限在理論階段,圖像超分,尤其是視頻超分如果要大規(guī)模落地的話,必須要去解決一些實(shí)際問題。首先是網(wǎng)絡(luò)模型的問題,目前很多深度學(xué)習(xí)方法為了追求更好的超分辨效果,采用的模型規(guī)模比較龐大,參數(shù)量越來越多,會耗費(fèi)大量的計(jì)算資源,在很多實(shí)際場景無法實(shí)時(shí)處理。其次是深度學(xué)習(xí)模型的泛化能力問題,對于各種深度學(xué)習(xí)模型來說,都會存在訓(xùn)練集適配的問題,在訓(xùn)練的時(shí)候所使用的訓(xùn)練集不同,在不同場景上的表現(xiàn)也不同,用公開數(shù)據(jù)集訓(xùn)練的模型,在實(shí)際應(yīng)用場景中未必會有同樣良好的表現(xiàn)。最后是真實(shí)場景下超分效果的問題,目前學(xué)術(shù)界的超分方法,大都是關(guān)于比較理想的場景,完成從下采樣圖像到高分辨圖像的重建,但在真實(shí)場景中,圖像退化不僅包括下采樣因素,還會有很多其他因素,比如圖像壓縮、噪點(diǎn)、模糊等。

綜上而言,目前基于AI的超分辨方法,在RTC視頻任務(wù)中,所面臨的主要挑戰(zhàn)可以概括為,如何憑借規(guī)模比較小的網(wǎng)絡(luò)來實(shí)現(xiàn)具有良好真實(shí)效果的視頻質(zhì)量增強(qiáng),也就是怎么樣“既叫馬兒跑得快,又讓馬兒少吃草”。

三、視頻超分辨技術(shù)的發(fā)展方向

首先,深度學(xué)習(xí)方法依然會是超分辨算法的主流。

因?yàn)閭鹘y(tǒng)的方法在超分辨任務(wù)上的效果不夠理想,細(xì)節(jié)比較差。深度學(xué)習(xí)方法為超分辨提供了一條新的思路。近年來基于卷積神經(jīng)網(wǎng)絡(luò)的超分辨方法,逐漸成為主流方法,效果也在不斷改善。

從上圖可以看到,近幾年來,基于AI的超分辨方法相對于傳統(tǒng)方法的論文數(shù)量呈現(xiàn)出一邊倒的局面,并且這種局面在未來幾年還會進(jìn)一步擴(kuò)大。因?yàn)殡m然存在一些問題,但隨著一些輕量級網(wǎng)絡(luò)的出現(xiàn),深度學(xué)習(xí)方法將來在落地應(yīng)用方面可能會有更大的突破,這些問題也將會得以解決,深度學(xué)習(xí)方法依然會是超分辨的主流研究方向。

其次,一些參數(shù)較小的輕量級網(wǎng)絡(luò),在推動(dòng)超分算法落地方面,會發(fā)揮更大的作用。

因?yàn)槟壳案鞣N深度卷積網(wǎng)絡(luò)方法,比如EDSR、RDN這類深度殘差網(wǎng)絡(luò)難以滿足視頻實(shí)時(shí)傳輸?shù)男枰恍┍容^小的輕量級網(wǎng)絡(luò)對于實(shí)時(shí)任務(wù)會有更好的效果。

第三,將來的超分辨方法會更加聚焦真實(shí)場景任務(wù)。

學(xué)術(shù)領(lǐng)域的SR方法多是針對下采樣問題進(jìn)行超分,在真實(shí)場景下的表現(xiàn)并不是很好,在真實(shí)場景中,圖像退化因素是各種各樣的,一些比較有針對性的方法,比如包含壓縮損失、編碼損失以及各種噪聲的超分辨任務(wù),可能會更加實(shí)用。

四、網(wǎng)易云信AI超分算法

在RTC領(lǐng)域中,由于視頻文件過于龐大,我們需要對其進(jìn)行編碼,然后再傳輸?shù)浇邮斩私獯a播放。由于編碼的本質(zhì)是對視頻的壓縮,當(dāng)網(wǎng)絡(luò)比較差時(shí),編碼量化參數(shù)會比較大,會造成嚴(yán)重的壓縮,導(dǎo)致輸出圖像產(chǎn)生塊效應(yīng)和其他失真,造成畫質(zhì)模糊。這種情況下,如果直接將解碼后的視頻進(jìn)行超分,壓縮損失也會被放大,超分效果往往不夠理想。針對這些問題,網(wǎng)易云信提出了基于編碼損失復(fù)原的視頻超分辨方法,采用數(shù)據(jù)驅(qū)動(dòng)和網(wǎng)絡(luò)設(shè)計(jì)并重的策略,通過數(shù)據(jù)處理模擬真實(shí)失真場景,并且從模型設(shè)計(jì)到工程化實(shí)現(xiàn)進(jìn)行層層優(yōu)化,對于制約AI超分技術(shù)的兩大問題有了一定的突破,在模型實(shí)時(shí)性和真實(shí)場景超分效果方面取得了不錯(cuò)的效果。

以上就是網(wǎng)易云信在推進(jìn)AI驅(qū)動(dòng)的超分技術(shù)落地應(yīng)用方面的一些實(shí)踐經(jīng)驗(yàn),希望對大家有所啟發(fā)和參考。
責(zé)任編輯人:CC

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • RTC
    RTC
    +關(guān)注

    關(guān)注

    2

    文章

    538

    瀏覽量

    66546
  • 超分辨
    +關(guān)注

    關(guān)注

    0

    文章

    7

    瀏覽量

    6569
收藏 人收藏

    評論

    相關(guān)推薦

    激光雷達(dá)面臨機(jī)遇挑戰(zhàn)

    上對地面成像,其分辨率足以能夠看到地面上的車輛。雖然這些系統(tǒng)的市場需求更小,且成本更高,但其發(fā)展將繼續(xù)降低傳感器技術(shù)的整體成本。挑戰(zhàn)由于激光雷達(dá)基于對激光脈沖返回傳感器所需時(shí)間的測量,因此高反射率的表面
    發(fā)表于 09-26 14:30

    移動(dòng)電視射頻技術(shù)面臨什么挑戰(zhàn)

    隨著數(shù)字移動(dòng)電視不斷向移動(dòng)設(shè)備的應(yīng)用轉(zhuǎn)移,應(yīng)用和系統(tǒng)工程師正面臨著各種挑戰(zhàn),比如外形尺寸的小型化、更低的功耗以及信號完整性。對現(xiàn)有移動(dòng)電視標(biāo)準(zhǔn)的研究重點(diǎn)將放在了DVB-H上。本文將從系統(tǒng)角度討論DVB-H接收器設(shè)計(jì)所面臨
    發(fā)表于 06-03 06:28

    LTE測試技術(shù)面臨什么挑戰(zhàn)

    運(yùn)營商建設(shè)LTE網(wǎng)絡(luò)的基本策略之一為LTE網(wǎng)絡(luò)、2G和3G網(wǎng)絡(luò)將長期共存,共同發(fā)展,多模、多制式、多頻的融合。LTE網(wǎng)絡(luò)測試領(lǐng)域也在業(yè)界的持續(xù)努力與實(shí)驗(yàn)網(wǎng)的驗(yàn)證下取得了很大的進(jìn)步。但在多網(wǎng)協(xié)同的發(fā)展方向上,仍面臨諸多挑戰(zhàn),需要進(jìn)
    發(fā)表于 06-10 07:48

    DVB-H接收器設(shè)計(jì)所面臨機(jī)遇挑戰(zhàn)討論

    隨著數(shù)字移動(dòng)電視不斷向移動(dòng)設(shè)備的應(yīng)用轉(zhuǎn)移,應(yīng)用和系統(tǒng)工程師正面臨著各種挑戰(zhàn),比如外形尺寸的小型化、更低的功耗以及信號完整性。對現(xiàn)有移動(dòng)電視標(biāo)準(zhǔn)的研究重點(diǎn)將放在了DVB-H上。本文將從系統(tǒng)角度討論DVB-H接收器設(shè)計(jì)所面臨
    發(fā)表于 07-08 07:35

    多點(diǎn)綜合技術(shù)面臨什么挑戰(zhàn)

    隨著設(shè)計(jì)復(fù)雜性增加,傳統(tǒng)的綜合方法面臨越來越大的挑戰(zhàn)。為此,Synplicity公司開發(fā)了同時(shí)適用于FPGA或 ASIC設(shè)計(jì)的多點(diǎn)綜合技術(shù),它集成了“自上而下”與“自下而上”綜合方法的優(yōu)勢,能提供高結(jié)果質(zhì)量和高生產(chǎn)率,同時(shí)削減存
    發(fā)表于 10-17 06:29

    模擬電路技術(shù)在數(shù)字時(shí)代面臨挑戰(zhàn)有哪些?

    模擬技術(shù)的無可替代的優(yōu)勢是什么?模擬電路技術(shù)在數(shù)字時(shí)代面臨挑戰(zhàn)有哪些?未來,模擬技術(shù)的發(fā)展趨勢是什么?與過去相比,目前模擬
    發(fā)表于 04-21 07:11

    LED汽車領(lǐng)域應(yīng)用面臨哪些挑戰(zhàn)

    控制LED的方法有哪些?LED汽車領(lǐng)域應(yīng)用面臨哪些挑戰(zhàn)?LED主要應(yīng)用于哪些領(lǐng)域
    發(fā)表于 05-11 06:08

    可重構(gòu)計(jì)算技術(shù)汽車電子領(lǐng)域面臨哪些問題?

    可重構(gòu)計(jì)算技術(shù)汽車電子領(lǐng)域的應(yīng)用前景可重構(gòu)計(jì)算技術(shù)汽車電子領(lǐng)域
    發(fā)表于 05-12 06:40

    RFID原理是什么?RFID技術(shù)面臨哪些挑戰(zhàn)

    RFID原理是什么?RFID技術(shù)面臨哪些挑戰(zhàn)
    發(fā)表于 05-26 06:06

    無線智能IP監(jiān)控面臨技術(shù)挑戰(zhàn)是什么?怎么解決?

    無線智能IP監(jiān)控面臨技術(shù)挑戰(zhàn)是什么?怎么解決?
    發(fā)表于 05-31 06:27

    DVB-H接收器設(shè)計(jì)所面臨機(jī)遇挑戰(zhàn)是什么?

    本文將從系統(tǒng)角度討論DVB-H接收器設(shè)計(jì)所面臨機(jī)遇挑戰(zhàn),并重點(diǎn)介紹射頻前端。
    發(fā)表于 06-02 06:35

    NFC技術(shù)門禁領(lǐng)域挑戰(zhàn)機(jī)遇

    隨著門禁系統(tǒng)市場的發(fā)展,門禁控制的主動(dòng)安防特性盡顯。門禁控制領(lǐng)域往往緊密圍繞著客戶的實(shí)際需求不斷變化,從大眾的門禁需求,逐步演化為深入特定行業(yè)的不同門禁解決方案。網(wǎng)絡(luò)化與智能化的應(yīng)用對于門禁領(lǐng)域來說是一個(gè)巨大的
    發(fā)表于 11-07 18:04 ?1424次閱讀

    物聯(lián)網(wǎng)技術(shù)農(nóng)牧領(lǐng)域運(yùn)用的機(jī)遇挑戰(zhàn)

    云輝牧聯(lián)聯(lián)合創(chuàng)始人張晴,與兩岸三地物聯(lián)網(wǎng)專家一道,共同探討物聯(lián)網(wǎng)技術(shù)農(nóng)牧領(lǐng)域運(yùn)用的機(jī)遇挑戰(zhàn)
    的頭像 發(fā)表于 07-11 09:54 ?4306次閱讀

    AI驅(qū)動(dòng)的分辨技術(shù)應(yīng)用現(xiàn)狀

    技術(shù)RTC領(lǐng)域大規(guī)模落地應(yīng)用所面臨機(jī)遇挑戰(zhàn)
    的頭像 發(fā)表于 11-25 15:41 ?3083次閱讀

    語音識別技術(shù)挑戰(zhàn)機(jī)遇

    一、引言 隨著科技的快速發(fā)展,語音識別技術(shù)成為了人機(jī)交互的重要方式。然而,盡管語音識別技術(shù)某些領(lǐng)域已經(jīng)取得了顯著的進(jìn)步,但在實(shí)際應(yīng)用中仍然存在許多
    的頭像 發(fā)表于 09-20 16:17 ?628次閱讀
    主站蜘蛛池模板: 天天操夜夜操夜夜操| 成年网站在线观看| 欧美高清一级| 免费人成在线观看网站品爱网| 免费在线播放黄色| 午夜大片网| 国产小视频在线看| 男人在线网站| 国产午夜精品久久久久| 免费精品美女久久久久久久久久| 在线看片成人| 夜夜嘿视频免费看| 国产69久久精品成人看| 亚洲国产精品乱码一区二区三区| 色综合天天综合网国产国产人| 欧美日韩国产在线一区| 天天曰| japanese色系tube日本护士| se97se成人亚洲网站在线观看 | h在线观看视频免费网站| 天堂种子| 精品卡1卡2卡三卡免费网站视频 | 全日本爽视频在线| 丁香久久婷婷| 久操资源在线| 午夜.dj高清在线观看免费8| 性欧美高清短视频免费| 免费四影虎ww4hu10| 你懂的手机在线观看| 在线观看免费观看| 一级特黄aa大片| 久久综合性| 日一日操一操| 日本在线一区| 色丁香影院| xx毛片| 色噜噜噜噜噜在线观看网站| 开心激情小说| 免费看国产黄色片| 可以免费看的黄色片| 日本xx69|