在讀技術博客的過程中,我們會發現那些能夠把知識、成果講透的博主很多都會做動態圖表。他們的圖是怎么做的?難度大嗎?這篇文章就介紹了 Python 中一種簡單的動態圖表制作方法。
數據暴增的年代,數據科學家、分析師在被要求對數據有更深的理解與分析的同時,還需要將結果有效地傳遞給他人。如何讓目標聽眾更直觀地理解?當然是將數據可視化啊,而且最好是動態可視化。 本文將以線型圖、條形圖和餅圖為例,系統地講解如何讓你的數據圖表動起來。
這些動態圖表是用什么做的? 接觸過數據可視化的同學應該對 Python 里的 Matplotlib 庫并不陌生。它是一個基于 Python 的開源數據繪圖包,僅需幾行代碼就可以幫助開發者生成直方圖、功率譜、條形圖、散點圖等。這個庫里有個非常實用的擴展包——FuncAnimation,可以讓我們的靜態圖表動起來。 FuncAnimation 是 Matplotlib 庫中 Animation 類的一部分,后續會展示多個示例。如果是首次接觸,你可以將這個函數簡單地理解為一個 While 循環,不停地在 “畫布” 上重新繪制目標數據圖。 如何使用 FuncAnimation? 這個過程始于以下兩行代碼:
importmatplotlib.animationasani animator=ani.FuncAnimation(fig,chartfunc,interval=100) 從中我們可以看到 FuncAnimation 的幾個輸入:
fig 是用來 「繪制圖表」的 figure 對象;
chartfunc 是一個以數字為輸入的函數,其含義為時間序列上的時間;
interval 這個更好理解,是幀之間的間隔延遲,以毫秒為單位,默認值為 200。
這是三個關鍵輸入,當然還有更多可選輸入,感興趣的讀者可查看原文檔,這里不再贅述。 下一步要做的就是將數據圖表參數化,從而轉換為一個函數,然后將該函數時間序列中的點作為輸入,設置完成后就可以正式開始了。 在開始之前依舊需要確認你是否對基本的數據可視化有所了解。也就是說,我們先要將數據進行可視化處理,再進行動態處理。 按照以下代碼進行基本調用。另外,這里將采用大型流行病的傳播數據作為案例數據(包括每天的死亡人數)。
importmatplotlib.animationasani importmatplotlib.pyplotasplt importnumpyasnp importpandasaspdurl='https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv' df=pd.read_csv(url,delimiter=',',header='infer')df_interest=df.loc[ df['Country/Region'].isin(['UnitedKingdom','US','Italy','Germany']) &df['Province/State'].isna()]df_interest.rename( index=lambdax:df_interest.at[x,'Country/Region'],inplace=True) df1=df_interest.transpose()df1=df1.drop(['Province/State','Country/Region','Lat','Long']) df1=df1.loc[(df1!=0).any(1)] df1.index=pd.to_datetime(df1.index)繪制三種常見動態圖表動態曲線圖
如下所示,首先需要做的第一件事是定義圖的各項,這些基礎項設定之后就會保持不變。它們包括:創建 figure 對象,x 標和 y 標,設置線條顏色和 figure 邊距等:
importnumpyasnp importmatplotlib.pyplotaspltcolor=['red','green','blue','orange'] fig=plt.figure() plt.xticks(rotation=45,ha="right",rotation_mode="anchor")#rotatethex-axisvalues plt.subplots_adjust(bottom=0.2,top=0.9)#ensuringthedates(onthex-axis)fitinthescreen plt.ylabel('NoofDeaths') plt.xlabel('Dates') 接下來設置 curve 函數,進而使用 .FuncAnimation 讓它動起來: defbuildmebarchart(i=int): plt.legend(df1.columns) p=plt.plot(df1[:i].index,df1[:i].values)#noteitonlyreturnsthedataset,uptothepointi foriinrange(0,4): p[i].set_color(color[i])#setthecolourofeachcurveimportmatplotlib.animationasani animator=ani.FuncAnimation(fig,buildmebarchart,interval=100) plt.show()動態餅狀圖
可以觀察到,其代碼結構看起來與線型圖并無太大差異,但依舊有細小的差別。
importnumpyasnp importmatplotlib.pyplotaspltfig,ax=plt.subplots() explode=[0.01,0.01,0.01,0.01]#popouteachslicefromthepiedefgetmepie(i): defabsolute_value(val):#turn%backtoanumber a=np.round(val/100.*df1.head(i).max().sum(),0) returnint(a) ax.clear() plot=df1.head(i).max().plot.pie(y=df1.columns,autopct=absolute_value,label='',explode=explode,shadow=True) plot.set_title('TotalNumberofDeaths '+str(df1.index[min(i,len(df1.index)-1)].strftime('%y-%m-%d')),fontsize=12)importmatplotlib.animationasani animator=ani.FuncAnimation(fig,getmepie,interval=200) plt.show() 主要區別在于,動態餅狀圖的代碼每次循環都會返回一組數值,但在線型圖中返回的是我們所在點之前的整個時間序列。返回時間序列通過 df1.head(i) 來實現,而. max()則保證了我們僅獲得最新的數據,因為流行病導致死亡的總數只有兩種變化:維持現有數量或持續上升。 df1.head(i).max()動態條形圖
創建動態條形圖的難度與上述兩個案例并無太大差別。在這個案例中,作者定義了水平和垂直兩種條形圖,讀者可以根據自己的實際需求來選擇圖表類型并定義變量欄。 fig=plt.figure() bar=''defbuildmebarchart(i=int): iv=min(i,len(df1.index)-1)#theloopiteratesanextraonetime,whichcausesthedataframestogooutofbounds.Thiswastheeasiest(mostlazy)waytosolvethis:) objects=df1.max().index y_pos=np.arange(len(objects)) performance=df1.iloc[[iv]].values.tolist()[0] ifbar=='vertical': plt.bar(y_pos,performance,align='center',color=['red','green','blue','orange']) plt.xticks(y_pos,objects) plt.ylabel('Deaths') plt.xlabel('Countries') plt.title('DeathsperCountry '+str(df1.index[iv].strftime('%y-%m-%d'))) else: plt.barh(y_pos,performance,align='center',color=['red','green','blue','orange']) plt.yticks(y_pos,objects) plt.xlabel('Deaths') plt.ylabel('Countries')animator=ani.FuncAnimation(fig,buildmebarchart,interval=100)plt.show()保存動畫圖 在制作完成后,存儲這些動態圖就非常簡單了,可直接使用以下代碼: animator.save(r'C: empmyfirstAnimation.gif')責任編輯:lq
-
數據
+關注
關注
8文章
7104瀏覽量
89295 -
可視化
+關注
關注
1文章
1198瀏覽量
20991 -
python
+關注
關注
56文章
4801瀏覽量
84878
原文標題:讓數據動起來:Python動態圖表制作!
文章出處:【微信號:DBDevs,微信公眾號:數據分析與開發】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論