在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

13個PyTorch使用的小竅門

深度學習自然語言處理 ? 來源:知乎 ? 作者:z.defying@知乎 ? 2021-03-12 09:13 ? 次閱讀

【導讀】本文整理了13則PyTorch使用的小竅門,包括了指定GPU編號、梯度裁剪、擴展單張圖片維度等實用技巧,能夠幫助工作者更高效地完成任務。

目錄

1、指定GPU編號

2、查看模型每層輸出詳情3、梯度裁剪4、擴展單張圖片維度5、one hot編碼6、防止驗證模型時爆顯存7、學習率衰減8、凍結某些層的參數9、對不同層使用不同學習率10、模型相關操作11、Pytorch內置one hot函數12、網絡參數初始化13、加載內置預訓練模型

1、指定GPU編號

設置當前使用的GPU設備僅為0號設備,設備名稱為 /gpu:0:os.environ[“CUDA_VISIBLE_DEVICES”] = “0”

設置當前使用的GPU設備為0,1號兩個設備,名稱依次為 /gpu:0、/gpu:1:os.environ[“CUDA_VISIBLE_DEVICES”] = “0,1” ,根據順序表示優先使用0號設備,然后使用1號設備。

指定GPU的命令需要放在和神經網絡相關的一系列操作的前面。

2、查看模型每層輸出詳情

Keras有一個簡潔的API來查看模型的每一層輸出尺寸,這在調試網絡時非常有用。現在在PyTorch中也可以實現這個功能。

使用很簡單,如下用法:

from torchsummary import summarysummary(your_model, input_size=(channels, H, W))

input_size 是根據你自己的網絡模型的輸入尺寸進行設置。

3、梯度裁剪(Gradient Clipping)

import torch.nn as nn

outputs = model(data)loss= loss_fn(outputs, target)optimizer.zero_grad()loss.backward()nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2)optimizer.step()

nn.utils.clip_grad_norm_ 的參數:

parameters – 一個基于變量的迭代器,會進行梯度歸一化

max_norm – 梯度的最大范數

norm_type – 規定范數的類型,默認為L2

@不橢的橢圓 提出:梯度裁剪在某些任務上會額外消耗大量的計算時間,可移步評論區查看詳情。

4、擴展單張圖片維度

因為在訓練時的數據維度一般都是 (batch_size, c, h, w),而在測試時只輸入一張圖片,所以需要擴展維度,擴展維度有多個方法:

import cv2import torch

image = cv2.imread(img_path)image = torch.tensor(image)print(image.size())

img = image.view(1, *image.size())print(img.size())

# output:# torch.Size([h, w, c])# torch.Size([1, h, w, c])

或import cv2import numpy as np

image = cv2.imread(img_path)print(image.shape)img = image[np.newaxis, :, :, :]print(img.shape)

# output:# (h, w, c)# (1, h, w, c)

或(感謝 @coldleaf 的補充)

import cv2import torch

image = cv2.imread(img_path)image = torch.tensor(image)print(image.size())

img = image.unsqueeze(dim=0) print(img.size())

img = img.squeeze(dim=0)print(img.size())

# output:# torch.Size([(h, w, c)])# torch.Size([1, h, w, c])# torch.Size([h, w, c])

tensor.unsqueeze(dim):擴展維度,dim指定擴展哪個維度。

tensor.squeeze(dim):去除dim指定的且size為1的維度,維度大于1時,squeeze()不起作用,不指定dim時,去除所有size為1的維度。

5、獨熱編碼

在PyTorch中使用交叉熵損失函數的時候會自動把label轉化成onehot,所以不用手動轉化,而使用MSE需要手動轉化成onehot編碼。

import torchclass_num = 8batch_size = 4

def one_hot(label): “”“ 將一維列表轉換為獨熱編碼 ”“” label = label.resize_(batch_size, 1) m_zeros = torch.zeros(batch_size, class_num) # 從 value 中取值,然后根據 dim 和 index 給相應位置賦值 onehot = m_zeros.scatter_(1, label, 1) # (dim,index,value)

return onehot.numpy() # Tensor -》 Numpy

label = torch.LongTensor(batch_size).random_() % class_num # 對隨機數取余print(one_hot(label))

# output:[[0. 0. 0. 1. 0. 0. 0. 0.] [0. 0. 0. 0. 1. 0. 0. 0.] [0. 0. 1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0.]]

注:第11條有更簡單的方法。

6、防止驗證模型時爆顯存

驗證模型時不需要求導,即不需要梯度計算,關閉autograd,可以提高速度,節約內存。如果不關閉可能會爆顯存。

with torch.no_grad(): # 使用model進行預測的代碼 pass

感謝@zhaz 的提醒,我把 torch.cuda.empty_cache() 的使用原因更新一下。

這是原回答:

Pytorch 訓練時無用的臨時變量可能會越來越多,導致 out of memory ,可以使用下面語句來清理這些不需要的變量。

官網 上的解釋為:

Releases all unoccupied cached memory currently held by the caching allocator so that those can be used in other GPU application and visible innvidia-smi. torch.cuda.empty_cache()

意思就是PyTorch的緩存分配器會事先分配一些固定的顯存,即使實際上tensors并沒有使用完這些顯存,這些顯存也不能被其他應用使用。這個分配過程由第一次CUDA內存訪問觸發的。而 torch.cuda.empty_cache() 的作用就是釋放緩存分配器當前持有的且未占用的緩存顯存,以便這些顯存可以被其他GPU應用程序中使用,并且通過 nvidia-smi命令可見。注意使用此命令不會釋放tensors占用的顯存。對于不用的數據變量,Pytorch 可以自動進行回收從而釋放相應的顯存。更詳細的優化可以查看 優化顯存使用 和 顯存利用問題。

7、學習率衰減

import torch.optim as optimfrom torch.optim import lr_scheduler

# 訓練前的初始化optimizer = optim.Adam(net.parameters(), lr=0.001)scheduler = lr_scheduler.StepLR(optimizer, 10, 0.1) # # 每過10個epoch,學習率乘以0.1

# 訓練過程中for n in n_epoch: scheduler.step() 。..

可以隨時查看學習率的值:optimizer.param_groups[0][‘lr’]。還有其他學習率更新的方式:1、自定義更新公式:scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch:1/(epoch+1))2、不依賴epoch更新學習率:lr_scheduler.ReduceLROnPlateau()提供了基于訓練中某些測量值使學習率動態下降的方法,它的參數說明到處都可以查到。

提醒一點就是參數 mode=‘min’ 還是‘max’,取決于優化的的損失還是準確率,即使用 scheduler.step(loss)還是scheduler.step(acc) 。

8、凍結某些層的參數

參考:https://www.zhihu.com/question/311095447/answer/589307812在加載預訓練模型的時候,我們有時想凍結前面幾層,使其參數在訓練過程中不發生變化。我們需要先知道每一層的名字,通過如下代碼打印:

net = Network() # 獲取自定義網絡結構for name, value in net.named_parameters(): print(‘name: {0}, grad: {1}’.format(name, value.requires_grad))

假設前幾層信息如下:

name: cnn.VGG_16.convolution1_1.weight, grad: Truename: cnn.VGG_16.convolution1_1.bias, grad: Truename: cnn.VGG_16.convolution1_2.weight, grad: Truename: cnn.VGG_16.convolution1_2.bias, grad: Truename: cnn.VGG_16.convolution2_1.weight, grad: Truename: cnn.VGG_16.convolution2_1.bias, grad: Truename: cnn.VGG_16.convolution2_2.weight, grad: Truename: cnn.VGG_16.convolution2_2.bias, grad: True

后面的True表示該層的參數可訓練,然后我們定義一個要凍結的層的列表:

no_grad = [ ‘cnn.VGG_16.convolution1_1.weight’, ‘cnn.VGG_16.convolution1_1.bias’, ‘cnn.VGG_16.convolution1_2.weight’, ‘cnn.VGG_16.convolution1_2.bias’]

凍結方法如下:

net = Net.CTPN() # 獲取網絡結構for name, value in net.named_parameters(): if name in no_grad: value.requires_grad = False else: value.requires_grad = True

凍結后我們再打印每層的信息:

name: cnn.VGG_16.convolution1_1.weight, grad: Falsename: cnn.VGG_16.convolution1_1.bias, grad: Falsename: cnn.VGG_16.convolution1_2.weight, grad: Falsename: cnn.VGG_16.convolution1_2.bias, grad: Falsename: cnn.VGG_16.convolution2_1.weight, grad: Truename: cnn.VGG_16.convolution2_1.bias, grad: Truename: cnn.VGG_16.convolution2_2.weight, grad: Truename: cnn.VGG_16.convolution2_2.bias, grad: True

可以看到前兩層的weight和bias的requires_grad都為False,表示它們不可訓練。

最后在定義優化器時,只對requires_grad為True的層的參數進行更新。

optimizer = optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=0.01)

9、對不同層使用不同學習率

我們對模型的不同層使用不同的學習率。還是使用這個模型作為例子:

net = Network() # 獲取自定義網絡結構for name, value in net.named_parameters(): print(‘name: {}’.format(name))

# 輸出:# name: cnn.VGG_16.convolution1_1.weight# name: cnn.VGG_16.convolution1_1.bias# name: cnn.VGG_16.convolution1_2.weight# name: cnn.VGG_16.convolution1_2.bias# name: cnn.VGG_16.convolution2_1.weight# name: cnn.VGG_16.convolution2_1.bias# name: cnn.VGG_16.convolution2_2.weight# name: cnn.VGG_16.convolution2_2.bias

對 convolution1 和 convolution2 設置不同的學習率,首先將它們分開,即放到不同的列表里:

conv1_params = []conv2_params = []

for name, parms in net.named_parameters(): if “convolution1” in name: conv1_params += [parms] else: conv2_params += [parms]

# 然后在優化器中進行如下操作:optimizer = optim.Adam( [ {“params”: conv1_params, ‘lr’: 0.01}, {“params”: conv2_params, ‘lr’: 0.001}, ], weight_decay=1e-3,)

我們將模型劃分為兩部分,存放到一個列表里,每部分就對應上面的一個字典,在字典里設置不同的學習率。當這兩部分有相同的其他參數時,就將該參數放到列表外面作為全局參數,如上面的`weight_decay`。

也可以在列表外設置一個全局學習率,當各部分字典里設置了局部學習率時,就使用該學習率,否則就使用列表外的全局學習率。

10、模型相關操作

這個內容比較多,我寫成了一篇文章:https://zhuanlan.zhihu.com/p/73893187

11、Pytorch內置one_hot函數

感謝@yangyangyang 補充:Pytorch 1.1后,one_hot可以直接用torch.nn.functional.one_hot。然后我將Pytorch升級到1.2版本,試用了下 one_hot 函數,確實很方便。具體用法如下:

import torch.nn.functional as Fimport torch

tensor = torch.arange(0, 5) % 3 # tensor([0, 1, 2, 0, 1])one_hot = F.one_hot(tensor)

# 輸出:# tensor([[1, 0, 0],# [0, 1, 0],# [0, 0, 1],# [1, 0, 0],# [0, 1, 0]])

F.one_hot會自己檢測不同類別個數,生成對應獨熱編碼。我們也可以自己指定類別數:

tensor = torch.arange(0, 5) % 3 # tensor([0, 1, 2, 0, 1])one_hot = F.one_hot(tensor, num_classes=5)

# 輸出:# tensor([[1, 0, 0, 0, 0],# [0, 1, 0, 0, 0],# [0, 0, 1, 0, 0],# [1, 0, 0, 0, 0],# [0, 1, 0, 0, 0]])

升級 Pytorch (cpu版本)的命令:conda install pytorch torchvision -c pytorch(希望Pytorch升級不會影響項目代碼)

12、網絡參數初始化

神經網絡的初始化是訓練流程的重要基礎環節,會對模型的性能、收斂性、收斂速度等產生重要的影響。

以下介紹兩種常用的初始化操作。

(1) 使用pytorch內置的torch.nn.init方法。

常用的初始化操作,例如正態分布、均勻分布、xavier初始化、kaiming初始化等都已經實現,可以直接使用。具體詳見PyTorch 中 torch.nn.init 中文文檔。

init.xavier_uniform(net1[0].weight)

(2) 對于一些更加靈活的初始化方法,可以借助numpy。

對于自定義的初始化方法,有時tensor的功能不如numpy強大靈活,故可以借助numpy實現初始化方法,再轉換到tensor上使用。

for layer in net1.modules(): if isinstance(layer, nn.Linear): # 判斷是否是線性層 param_shape = layer.weight.shape layer.weight.data = torch.from_numpy(np.random.normal(0, 0.5, size=param_shape)) # 定義為均值為 0,方差為 0.5 的正態分布

13、加載內置預訓練模型

torchvision.models模塊的子模塊中包含以下模型:

AlexNet

VGG

ResNet

SqueezeNet

DenseNet

導入這些模型的方法為:

import torchvision.models as modelsresnet18 = models.resnet18()alexnet = models.alexnet()vgg16 = models.vgg16()

有一個很重要的參數為pretrained,默認為False,表示只導入模型的結構,其中的權重是隨機初始化的。

如果pretrained 為 True,表示導入的是在ImageNet數據集上預訓練的模型。

import torchvision.models as modelsresnet18 = models.resnet18(pretrained=True)alexnet = models.alexnet(pretrained=True)vgg16 = models.vgg16(pretrained=True)

更多的模型可以查看:https://pytorch-cn.readthedocs.io/zh/latest/torchvision/torchvision-models/
編輯:lyn

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • gpu
    gpu
    +關注

    關注

    28

    文章

    4743

    瀏覽量

    128996
  • pytorch
    +關注

    關注

    2

    文章

    808

    瀏覽量

    13238

原文標題:【PyTorch】Trick集錦

文章出處:【微信號:zenRRan,微信公眾號:深度學習自然語言處理】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    利用Arm Kleidi技術實現PyTorch優化

    PyTorch 是一廣泛應用的開源機器學習 (ML) 庫。近年來,Arm 與合作伙伴通力協作,持續改進 PyTorch 的推理性能。本文將詳細介紹如何利用 Arm Kleidi 技術提升 Arm
    的頭像 發表于 12-23 09:19 ?183次閱讀
    利用Arm Kleidi技術實現<b class='flag-5'>PyTorch</b>優化

    PyTorch 數據加載與處理方法

    PyTorch 是一流行的開源機器學習庫,它提供了強大的工具來構建和訓練深度學習模型。在構建模型之前,一重要的步驟是加載和處理數據。 1. PyTorch 數據加載基礎 在
    的頭像 發表于 11-05 17:37 ?416次閱讀

    pytorch怎么在pycharm中運行

    第一部分:PyTorch和PyCharm的安裝 1.1 安裝PyTorch PyTorch是一開源的機器學習庫,用于構建和訓練神經網絡。要在PyCharm中使用
    的頭像 發表于 08-01 16:22 ?1479次閱讀

    pycharm如何調用pytorch

    引言 PyTorch是一開源的機器學習庫,廣泛用于計算機視覺、自然語言處理等領域。PyCharm是一流行的Python集成開發環境(IDE),提供了代碼編輯、調試、測試等功能。將PyTor
    的頭像 發表于 08-01 15:41 ?630次閱讀

    pytorch環境搭建詳細步驟

    PyTorch作為一廣泛使用的深度學習框架,其環境搭建對于從事機器學習和深度學習研究及開發的人員來說至關重要。以下將介紹PyTorch環境搭建的詳細步驟,包括安裝Anaconda、配置清華鏡像源
    的頭像 發表于 08-01 15:38 ?847次閱讀

    PyTorch深度學習開發環境搭建指南

    PyTorch作為一種流行的深度學習框架,其開發環境的搭建對于深度學習研究者和開發者來說至關重要。在Windows操作系統上搭建PyTorch環境,需要綜合考慮多個方面,包括軟件安裝、環境配置以及版本兼容性等。以下是一詳細的
    的頭像 發表于 07-16 18:29 ?1093次閱讀

    PyTorch中搭建一最簡單的模型

    PyTorch中搭建一最簡單的模型通常涉及幾個關鍵步驟:定義模型結構、加載數據、設置損失函數和優化器,以及進行模型訓練和評估。
    的頭像 發表于 07-16 18:09 ?2056次閱讀

    pytorch如何訓練自己的數據

    本文將詳細介紹如何使用PyTorch框架來訓練自己的數據。我們將從數據準備、模型構建、訓練過程、評估和測試等方面進行講解。 環境搭建 首先,我們需要安裝PyTorch。可以通過訪問PyTorch官網
    的頭像 發表于 07-11 10:04 ?551次閱讀

    pytorch中有神經網絡模型嗎

    當然,PyTorch是一廣泛使用的深度學習框架,它提供了許多預訓練的神經網絡模型。 PyTorch中的神經網絡模型 1. 引言 深度學習是一種基于人工神經網絡的機器學習技術,它在圖像識別、自然語言
    的頭像 發表于 07-11 09:59 ?708次閱讀

    PyTorch的介紹與使用案例

    PyTorch是一基于Python的開源機器學習庫,它主要面向深度學習和科學計算領域。PyTorch由Meta Platforms(原Facebook)的人工智能研究團隊開發,并逐漸發展成為深度
    的頭像 發表于 07-10 14:19 ?413次閱讀

    tensorflow和pytorch哪個更簡單?

    PyTorch更簡單。選擇TensorFlow還是PyTorch取決于您的具體需求和偏好。如果您需要一易于使用、靈活且具有強大社區支持的框架,PyTorch可能是一
    的頭像 發表于 07-05 09:45 ?890次閱讀

    PyTorch的特性和使用方法

    PyTorch是一開源的Python機器學習庫,由Meta Platforms(前身為Facebook)的人工智能研究團隊開發,并于2017年1月正式推出。PyTorch基于Torch庫,但
    的頭像 發表于 07-02 14:27 ?575次閱讀

    如何使用PyTorch建立網絡模型

    PyTorch是一基于Python的開源機器學習庫,因其易用性、靈活性和強大的動態圖特性,在深度學習領域得到了廣泛應用。本文將從PyTorch的基本概念、網絡模型構建、優化方法、實際應用等多個方面,深入探討使用
    的頭像 發表于 07-02 14:08 ?424次閱讀

    PyTorch與PyCharm的區別

    在深入探討PyTorch與PyCharm的區別時,我們首先需要明確兩者在計算機科學和數據科學領域中的不同定位和功能。PyTorch是一開源的深度學習庫,而PyCharm則是一款功能強大
    的頭像 發表于 07-02 12:36 ?3148次閱讀

    使用PyTorch構建神經網絡

    PyTorch是一流行的深度學習框架,它以其簡潔的API和強大的靈活性在學術界和工業界得到了廣泛應用。在本文中,我們將深入探討如何使用PyTorch構建神經網絡,包括從基礎概念到高級特性的全面解析。本文旨在為讀者提供一
    的頭像 發表于 07-02 11:31 ?727次閱讀
    主站蜘蛛池模板: 亚色综合| 欧美一级视频在线| 亚洲大胆精品337p色| 114毛片免费观看网站| 亚洲一区有码| 狠狠乱| 在线观看中文字幕第一页| 在线色| 天堂色综合| 日本黄色爽| 精品国产三级a∨在线| 国产美女精品视频免费观看| wwwxx在线| 天天射天| 成人在线一区二区三区| xxxx日本在线播放免费不卡| 免费观看一区二区| 亚洲欧美视频在线| 日本特黄色大片| 美国色网站| 俺要色| 免费国产小视频| 奇米四色777亚洲图| 蝌蚪自拍网二区| 色婷婷亚洲精品综合影院| 免费一日本一级裸片在线观看 | 日韩操穴| 国产亚洲精品免费| 日韩三级小视频| 国产偷窥女洗浴在线观看亚洲| 亚洲播播播| 亚洲haose在线观看| 高清不卡免费一区二区三区| 日日噜噜噜夜夜爽爽狠狠| 国产在线a不卡免费视频| 欧美色a电影精品aaaa| 国产三级在线看| 人人草人人| 乡村乱人伦短小说| 色综合久久五月| 国产经典一区|