在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深入研究文獻中關于圖像修復的第一個生成模型

新機器視覺 ? 來源:AI公園 ? 作者:AI公園 ? 2021-03-20 09:17 ? 次閱讀

導讀

本文給出了圖像恢復的一般性框架,編解碼器 + GAN,后面的圖像復原基本都是這個框架。

本文會介紹圖像修復的目的,它的應用,等等。然后,我們將深入研究文獻中關于圖像修復的第一個生成模型(即第一個基于GAN的修復算法,上下文編碼器)。

目標

很簡單的!我們想要填補圖像中缺失的部分。如圖1所示。

圖1,中心缺失的圖像(左),復原后的圖像(右)。

應用

移除圖像中不需要的部分(即目標移除)

修復損壞的圖像(可以擴展到修復電影)

很多其他應用!

術語

給出一個有一些缺失區域的圖像,我們定義

缺失像素/生成像素/空洞像素:待填充區域的像素。

有效像素/ground truth像素:和缺失像素含義相反。需要保留這些像素,這些像素可以幫助我們填補缺失的區域。

傳統方法

給出一個有一些缺失區域的圖像,最典型的傳統方法填充缺失區域是復制粘貼。

主要思想是從圖像本身或一個包含數百萬張圖像的大數據集中尋找最相似的圖像補丁,然后將它們粘貼到缺失的區域。

然而,搜索算法可能是耗時的,它涉及到手工設計距離的度量方法。在通用化和效率方面仍有改進的空間。

數據驅動的基于深度學習的方法

由于卷積神經網絡(Convolutional Neural Networks, CNNs)在圖像處理方面的成功,很多人開始將CNNs應用到自己的任務中。基于數據驅動的深度學習方法的強大之處在于,如果我們有足夠的訓練數據,我們就可以解決我們的問題。

如上所述,圖像修復就是將圖像中缺失的部分補上。這意味著我們想要生成一些不存在或沒有答案的東西。因此,所有基于深度學習的修復算法都使用生成對抗網絡(GANs)來產生視覺上吸引人的結果。為什么視覺上吸引人呢?由于沒有模型來回答生成的問題,人們更喜歡有良好視覺質量的結果,這是相當主觀的!

對于那些可能不知道GANs的讀者,我推薦你先去了解一下。這里以圖像修復為例,簡單地說,典型的GAN由一個生成器和一個鑒別器組成。生成器負責填補圖像中缺失的部分,鑒別器負責區分已填充圖像和真實圖像。請注意,真實的圖像是處于良好狀態的圖像(即沒有缺失的部分)。我們將隨機地將填充的圖像或真實的圖像輸入識別器來欺騙它。最終,如果鑒別器不能判斷圖像是被生成器填充的還是真實的圖像,生成器就能以良好的視覺質量填充缺失的部分!

第一個基于GAN的修復方法:上下文編碼器

在對image inpainting做了簡單的介紹之后,我希望你至少知道什么是image inpainting, GANs(一種生成模型)是inpainting領域常用的一種。現在,我們將深入研究本系列的第一篇論文。

Intention

作者想訓練一個CNN來預測圖像中缺失的像素。眾所周知,典型的CNNs(例如LeNet手寫數字識別和AlexNet圖像分類)包含許多的卷積層來提取特征,從簡單的結構特征到高級的語義特征(即早期層簡單的特征,比如邊緣,角點,到后面的層的更復雜的特征模式)。對于更復雜的功能模式,作者想利用學到的高層語義特征(也稱為隱藏特征)來幫助填充缺失的區域。

此外,為修復而學習的特征需要對圖像進行更深層次的語義理解。因此,學習到的特征對于其他任務也很有用,比如分類、檢測和語義分割。

背景

在此,我想為讀者提供一些背景信息

Autoencoders:這是一種通常用于重建任務的CNN結構。由于其形狀,也有人稱之為沙漏結構模型。對于這個結構,輸出大小與輸入大小相同,我們實際上有兩個部分,一個是編碼器,另一個是解碼器,如下圖2所示。編碼器部分用于特征編碼,針對輸入得到緊湊潛在的特征表示,而解碼器部分則對潛在特征表示進行解碼。我們通常把中間層稱為低維的“瓶頸”層,或者簡單地稱之為“瓶頸”,因此整個結構看起來就像一個沙漏。讓我們想象一下,我們將一幅完好無損的圖像輸入到這個自動編碼器中。在這種情況下,我們期望輸出應該與輸入完全相同。這意味著一個完美的重建。如果可能的話,“瓶頸”是輸入的一個完美的緊湊潛在特征表示。更具體地說,我們可以使用更少的數字來表示輸入(即更有效,它與降維技術有關)。因此,這個“瓶頸”包含了幾乎所有的輸入信息(可能包括高級語義特征),我們可以使用它來重構輸入。

圖2,自編碼器的結構圖解

上下文編碼器進行圖像生成

圖3,提出的上下文編碼器

圖3顯示了提出的上下文編碼器的概要。首先,輸入的是mask圖像(即有中心缺失的圖像)。輸入編碼器以獲得編碼后的特征。然后,本文的主要貢獻是在編碼特征和解碼特征之間放置通道全連接層,以獲得更好的語義特征(即“瓶頸”)。最后,解碼器利用“瓶頸”特征重建缺失的部分。讓我們來看看他們的網絡內部。

圖4,提出的網絡的結構細節

編碼器

編碼器使用AlexNet結構,他們用隨機初始化權值從頭開始訓練他們的網絡。

與原始的AlexNet架構和圖2所示的自動編碼器相比,主要的區別是中間的通道全連接層。如果網絡中只有卷積層,則無法利用特征圖上距離很遠的空間位置的特征。為了解決這個問題,我們可以使用全連接層,即當前層的每個神經元的值依賴于上一層的所有神經元的值。然而,全連接層會引入許多參數,8192x8192=67.1M,這甚至在GPU上也很難訓練,作者提出了通道全連接層來解決這個問題。

通道全連接層

實際上,通道全連接層非常簡單。我們只是完全獨立地連接每個通道而不是所有的通道。例如,我們有m個大小為nxn的特征映射。如果使用標準的全連接層,我們會有m2n?個參數,對于通道級的全連接層,我們只有mn?個參數。因此,我們可以在距離很遠的空間位置上捕獲特征,而不需要添加那么多額外的參數。

解碼器

對于解碼器來說,這只是編碼過程的反向。我們可以使用一系列的轉置卷積來獲得期望大小的重建圖像。

損失函數

本文使用的損失函數由兩項組成。第一項是重建損失(L2損失),它側重于像素級的重建精度(即PSNR方向的損失),但總是會導致圖像模糊。第二個是對抗損失,它通常用于GANs。它鼓勵真實圖像和填充圖像之間數據分布更接近。

對于那些對損失函數感興趣的讀者,我強烈推薦你們閱讀這篇論文中的方程。在這里,我只是口頭描述每個損失項。

f6324406-88ee-11eb-8b86-12bb97331649.png

重建損失(L2損失),M表示缺失的區域(1表示缺失區域,0表示有效像素),F是生成器

L2損失:計算生成的像素與對應ground truth像素之間的L2距離(歐幾里得距離)。只考慮圖4中所示的缺失區域。

f662eec6-88ee-11eb-8b86-12bb97331649.png

對抗損失,D是鑒別器。我們希望訓練出一種能夠區分填充圖像和真實圖像的鑒別器

對抗損失:對抗鑒別器的結構如圖4所示。鑒別器的輸出是一個二進制值0或1。如果輸入是真實圖像,則為1,如果輸入是填充圖像,則為0。

f6f51800-88ee-11eb-8b86-12bb97331649.png

聯合損失,Lambda_rec為0.999,Lambda_adv為0.001

使用隨機梯度下降(SGD),Adam優化器交替訓練生成器和鑒別器。

實驗結果

評估使用了兩個數據集,即Paris Street View和ImageNet。

作者首先展示了修復結果,然后他們還表明,作為預訓練步驟,學習到的特征可以遷移到其他任務中。

語義修復

圖5,修復結果,前3行是ImageNet數據集的結果,下面2行是來自Paris StreetView數據集的結果

圖5顯示了使用建議的上下文編碼器的修復結果。

f95796b8-88ee-11eb-8b86-12bb97331649.png

表1,Paris StreetView數據集的像素重建損失

作者與傳統的最近鄰修復算法進行了比較。顯然,該方法優于最近鄰修復方法。

圖6,使用不同方法的修復結果

圖6顯示了使用各種方法的修復結果。我們可以看到L2損失傾向于給出模糊的圖像(第二列)。L2 +對抗性的損失給更清晰的填充圖像。對于NN-Inpainting,他們只是復制和粘貼最相似的圖像補丁到缺失的區域。

特征學習

圖7,最近鄰的上下文

為了顯示他們學習到的特征的有用性,作者嘗試編碼不同的圖像patch,并根據編碼的特征得到最相似的patch。在圖7中。作者將其與傳統的HOG和典型的AlexNet進行了比較。它們實現了與AlexNet類似的表現,但AlexNet是在一百萬張標有數據集的圖像上預訓練的。

f9f5acd6-88ee-11eb-8b86-12bb97331649.png

表2,分類、檢測和語義分割的定量比較。

如表2所示,在ImageNet上預訓練過的模型具有最好的性能,但需要昂貴的標簽。在該方法中,上下文是用于訓練模型的監督。這就是他們所謂的通過修復圖像來學習特征。很明顯,它們學習到的特征表示與其他借助輔助監督訓練的模型相當,甚至更好。

總結

所提出的上下文編碼器訓練可以在上下文的條件下生成圖像。在語義修復方面達到了最先進的性能。

學習到的特征表示也有助于其他任務,如分類,檢測和語義分割。

要點

我想在這里強調一些要點。

對于圖像修復,我們必須使用來自有效像素的“提示”來幫助填充缺失的像素。“上下文”一詞是指對整個圖像本身的理解。

本文的主要貢獻是通道全連接層。其實,理解這一層并不難。對我來說,它是Non-Local Neural Networks或Self-Attention的早期版本/簡化版本。主要的一點是,前一層的所有特征位置對當前層的每個特征位置都有貢獻。從這個角度來看,我們對整個圖像的語義理解會更加深入。這個概念在后面的文章中被廣泛采用!

所有后來的修復論文都遵循了GAN-based結構(即編碼器-解碼器結構)。人們的目標是具有良好視覺質量的充滿圖像。

責任編輯:lq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 編碼器
    +關注

    關注

    45

    文章

    3651

    瀏覽量

    134769
  • 圖像
    +關注

    關注

    2

    文章

    1087

    瀏覽量

    40501
  • 模型
    +關注

    關注

    1

    文章

    3268

    瀏覽量

    48925

原文標題:用生成模型來做圖像恢復的介紹和回顧:上下文編碼器

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    借助谷歌Gemini和Imagen模型生成高質量圖像

    以獲得卓越的視覺效果。這個過程并不止于此;圖像生成,Imagen 2 可以進步優化以滿足特定需求,從而創建
    的頭像 發表于 01-03 10:38 ?355次閱讀
    借助谷歌Gemini和Imagen<b class='flag-5'>模型</b><b class='flag-5'>生成</b>高質量<b class='flag-5'>圖像</b>

    LMK1C1104第一個cycle在CLKOUT丟失,為什么?

    LMK1C1104: CLKIN的第一個cycle在CLKOUT丟失,詳情請參照關聯問題
    發表于 11-11 07:12

    AI大模型的最新研究進展

    AI大模型的最新研究進展體現在多個方面,以下是對其最新進展的介紹: 、技術創新與突破 生成式AI技術的爆發 : 生成式AI技術正在迅速發展
    的頭像 發表于 10-23 15:19 ?490次閱讀

    Meta發布Imagine Yourself AI模型,重塑個性化圖像生成未來

    Meta公司近日在人工智能領域邁出了重要步,隆重推出了其創新之作——“Imagine Yourself”AI模型,這突破性技術為個性化圖像生成
    的頭像 發表于 08-26 10:59 ?535次閱讀

    Transformer模型在語音識別和語音生成的應用優勢

    自然語言處理、語音識別、語音生成等多個領域展現出強大的潛力和廣泛的應用前景。本文將從Transformer模型的基本原理出發,深入探討其在語音識別和語音生成
    的頭像 發表于 07-03 18:24 ?1189次閱讀

    倫敦商學院深入研究中國神州數碼戰略轉型

    China)數字化轉型歷程的深入研究為基礎,共同撰寫了案例研究「神州數碼的轉型:駕馭數據、云和人工智能的潛力(The Transformation of Digital China
    的頭像 發表于 07-02 11:25 ?525次閱讀
    倫敦商學院<b class='flag-5'>深入研究</b>中國神州數碼戰略轉型

    【大語言模型:原理與工程實踐】探索《大語言模型原理與工程實踐》

    的全面認識,還提供了將這些模型應用于實際問題的實用指導。對于希望在人工智能領域深入研究的讀者來說,這是本不可多得的參考書籍。
    發表于 04-30 15:35

    基于TOF深度相機的圖像處理專利獲授權

    該專利主要涉及圖像處理技術領域,特別是針對基于TOF深度相機的圖像處理方法和存儲媒介進行了深入研究。其核心內容包括:首先,采集每個像素的初始實部數據與初始虛部數據;其次,通過將這些數據與當前數據相結合,
    的頭像 發表于 04-15 10:04 ?429次閱讀
    基于TOF深度相機的<b class='flag-5'>圖像</b>處理專利獲授權

    KOALA人工智能圖像生成模型問世

    近日,韓國科學團隊宣布研發出名為 KOALA 的新型人工智能圖像生成模型,該模型在速度和質量上均實現了顯著突破。KOALA 能夠在短短 2 秒內生成
    的頭像 發表于 03-05 10:46 ?804次閱讀

    谷歌Gemini AI模型因人物圖像生成問題暫停運行

    據報道,部分用戶發現Gemini生成的圖片存在明顯錯誤,如特斯拉創始人和其他名人變成了黑人模樣。谷歌已決定暫停該模型的人物圖像生成功能以待改善。
    的頭像 發表于 02-25 09:59 ?606次閱讀

    小白學大模型:什么是生成式人工智能?

    來源:Coggle數據科學什么是生成式人工智能?在過去幾年中,機器學習領域取得了迅猛進步,創造了人工智能的新的子領域:生成式人工智能。這些程序通過分析大量的數字化材料產生新穎的文本
    的頭像 發表于 02-22 08:27 ?1717次閱讀
    小白學大<b class='flag-5'>模型</b>:什么是<b class='flag-5'>生成</b>式人工智能?

    Stability AI試圖通過新的圖像生成人工智能模型保持領先地位

    Stability AI的最新圖像生成模型Stable Cascade承諾比其業界領先的前身Stable Diffusion更快、更強大,而Stable Diffusion是許多其他文本到圖像
    的頭像 發表于 02-19 16:03 ?960次閱讀
    Stability AI試圖通過新的<b class='flag-5'>圖像</b><b class='flag-5'>生成</b>人工智能<b class='flag-5'>模型</b>保持領先地位

    招就行—鴻蒙OS 編寫第一個頁面

    在 Java UI 框架,提供了兩種編寫布局的方式:在XML聲明UI布局和在代碼創建布局。這兩種方式創建出的布局沒有本質差別,為了熟悉兩種方式,我們將通過 XML 的方式編寫第一個
    的頭像 發表于 01-26 18:01 ?791次閱讀
    <b class='flag-5'>一</b>招就行—鴻蒙OS 編寫<b class='flag-5'>第一個</b>頁面

    Harvard FairSeg:第一個用于醫學分割的公平性數據集

    為了解決這些挑戰,我們提出了第一個大規模醫學分割領域的公平性數據集, Harvard-FairSeg。該數據集旨在用于研究公平性的cup-disc segmentation,從SLO眼底圖像
    的頭像 發表于 01-25 16:52 ?570次閱讀
    Harvard FairSeg:<b class='flag-5'>第一個</b>用于醫學分割的公平性數據集

    世界上第一個石墨烯半導體的“石墨烯”究竟是什么?

    有媒體報道稱有研究團隊創造了世界上第一個由石墨烯制成的功能半導體(Functional Graphene Semiconductor)。
    的頭像 發表于 01-23 11:26 ?1295次閱讀
    主站蜘蛛池模板: 国产激情在线观看| 操操久久| 色色网视频| 日韩在线视频免费观看| video另类蛇交| 色女人久久| 日韩a毛片| 久青草视频在线| 四虎永久在线免费观看| 精彩视频一区二区三区| 国产成人乱码一区二区三区| tube69日本| 深夜网站在线| 一区二区中文字幕亚洲精品| 91福利网winktv| 一区二区影视| 伊人9| www午夜| 精品久久久久国产免费| 又色又爽又黄视频| 色综合888| 精品xxxxxbbbb欧美中文| chinese国产videoxx实拍| 你懂得的在线观看免费视频| 精品欧美| 夜夜春宵翁熄性放纵古代| 久久精品国产精品亚洲精品| 四虎影视最新网址| 黄色片香蕉视频| 午夜不卡在线| 婷婷亚洲五月琪琪综合| 在线播放国产一区| 男人天堂伊人| 午夜免费看视频| 在线播放免费人成毛片乱码| 国产免费亚洲| 人人插人人艹| 午夜免费观看| 91操视频| 色婷婷一区| jiuma和我啪啪|