在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

計(jì)算機(jī)視覺(jué)方向簡(jiǎn)介

機(jī)器視覺(jué)自動(dòng)化 ? 來(lái)源:計(jì)算機(jī)視覺(jué)life ? 作者:計(jì)算機(jī)視覺(jué)life ? 2021-04-15 15:14 ? 次閱讀

VIO-SLAM

Visual-Inertial Odometry(VIO)即視覺(jué)慣性里程計(jì),有時(shí)也叫視覺(jué)慣性系統(tǒng)(VINS,visual-inertial system),是融合相機(jī)和IMU數(shù)據(jù)實(shí)現(xiàn)SLAM的算法,根據(jù)融合框架的不同又分為松耦合和緊耦合。

9accbf00-9ce0-11eb-8b86-12bb97331649.jpg

其中VO(visual odometry)指僅視覺(jué)的里程計(jì),T表示位置和姿態(tài)。松耦合中視覺(jué)運(yùn)動(dòng)估計(jì)和慣導(dǎo)運(yùn)動(dòng)估計(jì)系統(tǒng)是兩個(gè)獨(dú)立的模塊,將每個(gè)模塊的輸出結(jié)果進(jìn)行融合。

9afc8f46-9ce0-11eb-8b86-12bb97331649.jpg

緊耦合則是使用兩個(gè)傳感器的原始數(shù)據(jù)共同估計(jì)一組變量,傳感器噪聲也是相互影響的。緊耦合算法比較復(fù)雜,但充分利用了傳感器數(shù)據(jù),可以實(shí)現(xiàn)更好的效果,是目前研究的重點(diǎn)。

相機(jī)和IMU的缺點(diǎn)及互補(bǔ)性

9b237160-9ce0-11eb-8b86-12bb97331649.jpg

相機(jī)和IMU融合有很好的互補(bǔ)性。首先通過(guò)將IMU 估計(jì)的位姿序列和相機(jī)估計(jì)的位姿序列對(duì)齊可以估計(jì)出相機(jī)軌跡的真實(shí)尺度,而且IMU 可以很好地預(yù)測(cè)出圖像幀的位姿以及上一時(shí)刻特征點(diǎn)在下幀圖像的位置,提高特征跟蹤算法匹配速度和應(yīng)對(duì)快速旋轉(zhuǎn)的算法魯棒性,最后IMU 中加速度計(jì)提供的重力向量可以將估計(jì)的位置轉(zhuǎn)為實(shí)際導(dǎo)航需要的世界坐標(biāo)系中。

隨著MEMS器件的快速發(fā)展,智能手機(jī)等移動(dòng)終端可以便捷地獲取IMU數(shù)據(jù)和攝像頭拍攝數(shù)據(jù),融合IMU 和視覺(jué)信息的VINS 算法可以很大程度地提高單目SLAM 算法性能,是一種低成本高性能的導(dǎo)航方案,在機(jī)器人、AR/VR 領(lǐng)域得到了很大的關(guān)注。

算法流程

9b501ac6-9ce0-11eb-8b86-12bb97331649.jpg

整個(gè)流程圖可以分解為五部分:數(shù)據(jù)預(yù)處理、初始化、局部非線性優(yōu)化、回環(huán)檢測(cè)和全局優(yōu)化。

各個(gè)模塊的主要作用是:

圖像和IMU數(shù)據(jù)預(yù)處理:對(duì)于圖像,提取特征點(diǎn),利用KLT金字塔進(jìn)行光流跟蹤,為后面僅視覺(jué)初始化求解相機(jī)位姿做準(zhǔn)備。對(duì)于IMU,將IMU數(shù)據(jù)進(jìn)行預(yù)積分,得到當(dāng)前時(shí)刻的位姿、速度、旋轉(zhuǎn)角,同時(shí)計(jì)算在后端優(yōu)化中將要用到的相鄰幀間的預(yù)積分增量,及預(yù)積分的協(xié)方差矩陣和雅可比矩陣。

初始化:初始化中,首先進(jìn)行僅視覺(jué)的初始化,解算出相機(jī)的相對(duì)位姿;然后再與IMU預(yù)積分進(jìn)行對(duì)齊求解初始化參數(shù)

局部非線性優(yōu)化:對(duì)應(yīng)流程圖中滑動(dòng)窗口的視覺(jué)慣導(dǎo)非線性優(yōu)化,即將視覺(jué)約束、IMU約束放在一個(gè)大目標(biāo)函數(shù)中進(jìn)行優(yōu)化,這里的局部?jī)?yōu)化也就是只優(yōu)化當(dāng)前幀及之前的n幀的窗口中的變量,局部非線性優(yōu)化輸出較為精確的位姿。

回環(huán)檢測(cè):回環(huán)檢測(cè)是將前面檢測(cè)的圖像關(guān)鍵幀保存起來(lái),當(dāng)再回到原來(lái)經(jīng)過(guò)的同一個(gè)地方,通過(guò)特征點(diǎn)的匹配關(guān)系,判斷是否已經(jīng)來(lái)過(guò)這里。前面提到的關(guān)鍵幀就是篩選出來(lái)的能夠記下但又避免冗余的相機(jī)幀(關(guān)鍵幀的選擇標(biāo)準(zhǔn)是當(dāng)前幀和上一幀之間的位移超過(guò)一定閾值或匹配的特征點(diǎn)數(shù)小于一定閾值)。

全局優(yōu)化:全局優(yōu)化是在發(fā)生回環(huán)檢測(cè)時(shí),利用相機(jī)約束和IMU約束,再加上回環(huán)檢測(cè)的約束,進(jìn)行非線性優(yōu)化。全局優(yōu)化在局部?jī)?yōu)化的基礎(chǔ)上進(jìn)行,輸出更為精確的位姿。

算法核心

局部?jī)?yōu)化會(huì)用到邊緣化,僅用局部?jī)?yōu)化精度低,全局一致性差,但是速度快,IMU利用率高;僅用全局優(yōu)化精度高,全局一致性好,但是速度慢,IMU利用率低;兩者側(cè)重點(diǎn)不同,所以將兩者結(jié)合,可以優(yōu)勢(shì)互補(bǔ)。

因此小編設(shè)計(jì)實(shí)驗(yàn)采用局部?jī)?yōu)化和全局優(yōu)化融合的方法。

9b869d4e-9ce0-11eb-8b86-12bb97331649.jpg

局部?jī)?yōu)化是滑動(dòng)窗口內(nèi)相機(jī)幀的優(yōu)化,全局優(yōu)化是所有關(guān)鍵幀的優(yōu)化,兩者結(jié)合會(huì)產(chǎn)生邊緣幀沖突的問(wèn)題,因?yàn)榫植績(jī)?yōu)化會(huì)固定滑動(dòng)窗口邊緣幀,而全局優(yōu)化發(fā)生回環(huán)檢測(cè)的時(shí)候則會(huì)固定回環(huán)起點(diǎn)的幀。這里的改進(jìn)就是采用相對(duì)的位姿邊緣化,即邊緣化以后的點(diǎn)是相對(duì)于它上一時(shí)刻關(guān)鍵幀的位姿而不是全局的位姿,這樣局部?jī)?yōu)化邊緣化相對(duì)位姿(關(guān)鍵幀),扔給全局優(yōu)化整體優(yōu)化。局部邊緣化和全局邊緣化的結(jié)合部分是關(guān)鍵幀。

相對(duì)邊緣化可以具體解釋為,相對(duì)邊緣化的參考坐標(biāo)系不再是世界坐標(biāo)系,而是與當(dāng)前幀共視且距離最近的一個(gè)關(guān)鍵幀的相機(jī)系(設(shè)為第k0幀)。視覺(jué)約束可以表示為:

9c064bca-9ce0-11eb-8b86-12bb97331649.png

區(qū)別于絕對(duì)邊緣化的視覺(jué)約束

9c22c6ce-9ce0-11eb-8b86-12bb97331649.png

實(shí)驗(yàn)結(jié)果與總結(jié)

實(shí)驗(yàn)一:無(wú)人機(jī)數(shù)據(jù)集上的實(shí)驗(yàn)

數(shù)據(jù)集采用了歐盟機(jī)器人挑戰(zhàn)數(shù)據(jù)集(EuRoC)。EuRoC 數(shù)據(jù)集使用 Asctec Firefly 六旋翼飛行器在倉(cāng)庫(kù)和房間采集數(shù)據(jù),數(shù)據(jù)集中包括以20Hz采集的相機(jī)圖像和200Hz的IMU數(shù)據(jù),以及運(yùn)動(dòng)真值。

實(shí)驗(yàn)結(jié)果如下:

9c33366c-9ce0-11eb-8b86-12bb97331649.jpg

實(shí)驗(yàn)結(jié)果可見(jiàn),融合優(yōu)化的軌跡和真實(shí)軌跡很接近,而僅使用局部?jī)?yōu)化的定位結(jié)果誤差不斷累積。

實(shí)驗(yàn)二:車(chē)載數(shù)據(jù)上的實(shí)驗(yàn)

該車(chē)載數(shù)據(jù)是在北京市朝陽(yáng)區(qū)某小區(qū)采集的,在數(shù)據(jù)采集階段,車(chē)輛以5km/h 到 30km/h 的速度行駛,一共行駛2271m。

實(shí)驗(yàn)結(jié)果如下:

9ca8ddcc-9ce0-11eb-8b86-12bb97331649.jpg

實(shí)驗(yàn)結(jié)果可見(jiàn),融合優(yōu)化后的定位結(jié)果明顯優(yōu)于僅使用局部?jī)?yōu)化的定位結(jié)果,融合優(yōu)化中誤差得到及時(shí)修正。

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 模塊
    +關(guān)注

    關(guān)注

    7

    文章

    2721

    瀏覽量

    47566
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4622

    瀏覽量

    93054
  • 計(jì)算機(jī)視覺(jué)

    關(guān)注

    8

    文章

    1698

    瀏覽量

    46031

原文標(biāo)題:計(jì)算機(jī)視覺(jué)方向簡(jiǎn)介 | 視覺(jué)慣性里程計(jì)(VIO)

文章出處:【微信號(hào):jiqishijue2020,微信公眾號(hào):機(jī)器視覺(jué)自動(dòng)化】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    計(jì)算機(jī)視覺(jué)有哪些優(yōu)缺點(diǎn)

    計(jì)算機(jī)視覺(jué)作為人工智能領(lǐng)域的一個(gè)重要分支,旨在使計(jì)算機(jī)能夠像人類(lèi)一樣理解和解釋圖像和視頻中的信息。這一技術(shù)的發(fā)展不僅推動(dòng)了多個(gè)行業(yè)的變革,也帶來(lái)了諸多優(yōu)勢(shì),但同時(shí)也伴隨著一些挑戰(zhàn)和局限性。以下是對(duì)
    的頭像 發(fā)表于 08-14 09:49 ?1019次閱讀

    機(jī)器視覺(jué)計(jì)算機(jī)視覺(jué)有什么區(qū)別

    機(jī)器視覺(jué)計(jì)算機(jī)視覺(jué)是兩個(gè)密切相關(guān)但又有所區(qū)別的概念。 一、定義 機(jī)器視覺(jué) 機(jī)器視覺(jué),又稱(chēng)為計(jì)算機(jī)
    的頭像 發(fā)表于 07-16 10:23 ?557次閱讀

    計(jì)算機(jī)視覺(jué)的五大技術(shù)

    計(jì)算機(jī)視覺(jué)作為深度學(xué)習(xí)領(lǐng)域最熱門(mén)的研究方向之一,其技術(shù)涵蓋了多個(gè)方面,為人工智能的發(fā)展開(kāi)拓了廣闊的道路。以下是對(duì)計(jì)算機(jī)視覺(jué)五大技術(shù)的詳細(xì)解析
    的頭像 發(fā)表于 07-10 18:26 ?1425次閱讀

    計(jì)算機(jī)視覺(jué)的工作原理和應(yīng)用

    計(jì)算機(jī)視覺(jué)(Computer Vision,簡(jiǎn)稱(chēng)CV)是一門(mén)跨學(xué)科的研究領(lǐng)域,它利用計(jì)算機(jī)和數(shù)學(xué)算法來(lái)模擬人類(lèi)視覺(jué)系統(tǒng)對(duì)圖像和視頻進(jìn)行識(shí)別、理解、分析和處理。其核心目標(biāo)在于使
    的頭像 發(fā)表于 07-10 18:24 ?2076次閱讀

    計(jì)算機(jī)視覺(jué)與人工智能的關(guān)系是什么

    引言 計(jì)算機(jī)視覺(jué)是一門(mén)研究如何使計(jì)算機(jī)能夠理解和解釋視覺(jué)信息的學(xué)科。它涉及到圖像處理、模式識(shí)別、機(jī)器學(xué)習(xí)等多個(gè)領(lǐng)域的知識(shí)。人工智能則是研究如何使計(jì)算
    的頭像 發(fā)表于 07-09 09:25 ?684次閱讀

    計(jì)算機(jī)視覺(jué)與智能感知是干嘛的

    引言 計(jì)算機(jī)視覺(jué)(Computer Vision)是一門(mén)研究如何使計(jì)算機(jī)能夠理解和解釋視覺(jué)信息的學(xué)科。它涉及到圖像處理、模式識(shí)別、機(jī)器學(xué)習(xí)等多個(gè)領(lǐng)域,是人工智能的重要組成部分。智能
    的頭像 發(fā)表于 07-09 09:23 ?969次閱讀

    計(jì)算機(jī)視覺(jué)和機(jī)器視覺(jué)區(qū)別在哪

    計(jì)算機(jī)視覺(jué)和機(jī)器視覺(jué)是兩個(gè)密切相關(guān)但又有明顯區(qū)別的領(lǐng)域。 一、定義 計(jì)算機(jī)視覺(jué) 計(jì)算機(jī)
    的頭像 發(fā)表于 07-09 09:22 ?468次閱讀

    計(jì)算機(jī)視覺(jué)和圖像處理的區(qū)別和聯(lián)系

    計(jì)算機(jī)視覺(jué)和圖像處理是兩個(gè)密切相關(guān)但又有明顯區(qū)別的領(lǐng)域。 1. 基本概念 1.1 計(jì)算機(jī)視覺(jué) 計(jì)算機(jī)視覺(jué)
    的頭像 發(fā)表于 07-09 09:16 ?1365次閱讀

    計(jì)算機(jī)視覺(jué)屬于人工智能嗎

    屬于,計(jì)算機(jī)視覺(jué)是人工智能領(lǐng)域的一個(gè)重要分支。 引言 計(jì)算機(jī)視覺(jué)是一門(mén)研究如何使計(jì)算機(jī)具有視覺(jué)
    的頭像 發(fā)表于 07-09 09:11 ?1344次閱讀

    深度學(xué)習(xí)在計(jì)算機(jī)視覺(jué)領(lǐng)域的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其中的核心技術(shù)之一,已經(jīng)在計(jì)算機(jī)視覺(jué)領(lǐng)域取得了顯著的成果。計(jì)算機(jī)視覺(jué),作為計(jì)算機(jī)科學(xué)的一個(gè)重要分支,
    的頭像 發(fā)表于 07-01 11:38 ?845次閱讀

    機(jī)器視覺(jué)計(jì)算機(jī)視覺(jué)的區(qū)別

    在人工智能和自動(dòng)化技術(shù)的快速發(fā)展中,機(jī)器視覺(jué)(Machine Vision, MV)和計(jì)算機(jī)視覺(jué)(Computer Vision, CV)作為兩個(gè)重要的分支領(lǐng)域,都扮演著至關(guān)重要的角色。盡管它們?cè)?/div>
    的頭像 發(fā)表于 06-06 17:24 ?1362次閱讀

    計(jì)算機(jī)視覺(jué)的主要研究方向

    計(jì)算機(jī)視覺(jué)(Computer Vision, CV)作為人工智能領(lǐng)域的一個(gè)重要分支,致力于使計(jì)算機(jī)能夠像人眼一樣理解和解釋圖像和視頻中的信息。隨著深度學(xué)習(xí)、大數(shù)據(jù)等技術(shù)的快速發(fā)展,計(jì)算機(jī)
    的頭像 發(fā)表于 06-06 17:17 ?1004次閱讀

    計(jì)算機(jī)視覺(jué)的十大算法

    隨著科技的不斷發(fā)展,計(jì)算機(jī)視覺(jué)領(lǐng)域也取得了長(zhǎng)足的進(jìn)步。本文將介紹計(jì)算機(jī)視覺(jué)領(lǐng)域的十大算法,包括它們的基本原理、應(yīng)用場(chǎng)景和優(yōu)缺點(diǎn)。這些算法在圖像處理、目標(biāo)檢測(cè)、人臉識(shí)別等領(lǐng)域有著廣泛的應(yīng)
    的頭像 發(fā)表于 02-19 13:26 ?1264次閱讀
    <b class='flag-5'>計(jì)算機(jī)</b><b class='flag-5'>視覺(jué)</b>的十大算法

    機(jī)器視覺(jué)、工業(yè)視覺(jué)計(jì)算機(jī)視覺(jué)這三者的關(guān)系

    機(jī)器視覺(jué)、工業(yè)視覺(jué)計(jì)算機(jī)視覺(jué)這三者的關(guān)系
    的頭像 發(fā)表于 01-24 10:51 ?1350次閱讀
    機(jī)器<b class='flag-5'>視覺(jué)</b>、工業(yè)<b class='flag-5'>視覺(jué)</b>和<b class='flag-5'>計(jì)算機(jī)</b><b class='flag-5'>視覺(jué)</b>這三者的關(guān)系

    工業(yè)視覺(jué)計(jì)算機(jī)視覺(jué)的區(qū)別

    工業(yè)視覺(jué)主要解決以往需要人眼進(jìn)行的工件的定位、測(cè)量、檢測(cè)等重復(fù)性勞動(dòng);計(jì)算機(jī)視覺(jué)的主要任務(wù)是賦予智能機(jī)器人視覺(jué),利用測(cè)距、物體標(biāo)定與識(shí)別等功能實(shí)現(xiàn)對(duì)于外界位置信息、圖像信息等的識(shí)別與判
    發(fā)表于 01-16 10:06 ?616次閱讀
    工業(yè)<b class='flag-5'>視覺(jué)</b>與<b class='flag-5'>計(jì)算機(jī)</b><b class='flag-5'>視覺(jué)</b>的區(qū)別
    主站蜘蛛池模板: 欧美人与动性视频在线观| 美女扒开尿口给男人桶| 狠狠色丁香婷婷综合视频| 色婷婷婷丁香亚洲综合不卡| 午夜高清在线观看免费6| 国产在线精彩视频二区| 免费色在线| 琪琪see色原网一区二区| 四虎影院免费在线播放| 亚洲欧美一区二区久久香蕉| 久久精品第一页| 亚洲综合成人在线| 诱人的老师bd高清日本在线观看 | 日本免费观看完整视频| 婷婷99| 亚洲视频在线不卡| 56pao强力打造| 操她射她| 国产人人干| 操操干| 亚洲视频五区| 亚洲黄色影片| 五月天精品在线| 男女免费在线视频| 久久综合欧美成人| 久久手机视频| 激情综合五月婷婷| 狠狠色欧美亚洲狠狠色www| bt天堂资源| 亚洲永久免费视频| 69视屏| 一本在线免费视频| 国产永久免费爽视频在线| 超级碰碰青草免费视频92| 亚洲1区2区3区4区| 浮荡视频在线观看免费| 曰本福利写真片视频在线| 日韩欧美视频在线一区二区| 欧美人与牲动交xxxxbbbb| 国产精品国产三级国产在线观看| xx毛片|