在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何用OpenCL實(shí)現(xiàn)FPGA上的大型卷積網(wǎng)絡(luò)加速?

FPGA之家 ? 來源:CSDN ? 作者:祥瑞Coding ? 2021-04-19 11:12 ? 次閱讀

Xilinx zynq系列FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)評(píng)估

本篇目錄

1. 內(nèi)存占用

1.1 FPGA程序中內(nèi)存的實(shí)現(xiàn)方式

1.2 Zynq的BRAM內(nèi)存大小

1.3 一個(gè)卷積操作占用的內(nèi)存

2. PipeCNN可實(shí)現(xiàn)性

PipeCNN論文解析:用OpenCL實(shí)現(xiàn)FPGA上的大型卷積網(wǎng)絡(luò)加速

2.1 已實(shí)現(xiàn)的PipeCNN資源消耗

3. 實(shí)現(xiàn)大型神經(jīng)網(wǎng)絡(luò)的方法

4. Virtex-7高端FPGA概覽、7系列FPGA相關(guān)文檔

正文

0Zynq7000系列概覽

3fd119b4-9ff3-11eb-8b86-12bb97331649.png

1內(nèi)存占用

1.1 FPGA程序中內(nèi)存的實(shí)現(xiàn)方式

參閱xilinx文檔UG998

3fe9ac4a-9ff3-11eb-8b86-12bb97331649.png

FPGA并沒有像軟件那樣用已有的cache,F(xiàn)PGA的HLS編譯器會(huì)在FPGA中創(chuàng)建一個(gè)快速的memory architecture以最好的適應(yīng)算法中的數(shù)據(jù)樣式(data layout)。因此FPGA可以有相互獨(dú)立的不同大小的內(nèi)部存儲(chǔ)空間,例如寄存器,移位寄存器,F(xiàn)IFOs和BRAMs

寄存器:最快的內(nèi)存結(jié)構(gòu),集成在在運(yùn)算單元之中,獲取不需要額外的時(shí)延。

移位寄存器:可以被當(dāng)作一個(gè)數(shù)據(jù)序列,每一個(gè)數(shù)據(jù)可以在不同的運(yùn)算之中被重復(fù)使用。將其中所有數(shù)據(jù)移動(dòng)到相鄰的存儲(chǔ)設(shè)備中只需要一個(gè)時(shí)鐘周期。

FIFO:只有一個(gè)輸入和輸出的數(shù)據(jù)序列,通常被用于循環(huán)或循環(huán)函數(shù),細(xì)節(jié)會(huì)被HLS編譯器處理。

BRAM:集成在FPGA fabric模塊中的RAM,每個(gè)xilinx的FPGA中集成有多個(gè)這樣的BRAM??梢员划?dāng)作有以下特性的cache:1.不支持像處理器cache中那樣的緩存一致性(cache coherency,collision),不支持處理器中的一些邏輯類型。2.只在設(shè)備有電時(shí)保持內(nèi)存。3.不同的BRAM塊可以同時(shí)傳輸數(shù)據(jù)。

1.2 Zynq的BRAM內(nèi)存大小

401c62b6-9ff3-11eb-8b86-12bb97331649.png

zynq 7z020的BRAM為4.9Mb,7z035的BRAM為17.6Mb(2.2MB)

4056ec9c-9ff3-11eb-8b86-12bb97331649.png

1.3 一個(gè)卷積操作占用的內(nèi)存

例如,我們實(shí)現(xiàn)的卷積函數(shù),輸入27×600,卷積核16×27,輸出16×600,數(shù)據(jù)類型為float。

//convolution operation for (i = 0; i 《 16; i++) { for (j = 0; j 《 600; j++) { result = 0; for (k = 0; k 《 27; k++) { temp = weights[i*27+k] * buf_in[k*600+j]; result += temp; } buf_out[i*600+j] = result; } }

在HLS中生成的IPcore占用硬件資源為:

40a24fb6-9ff3-11eb-8b86-12bb97331649.png

40c04278-9ff3-11eb-8b86-12bb97331649.png

40ca8fa8-9ff3-11eb-8b86-12bb97331649.png

在vivado中搭建好系統(tǒng),占用的資源為:

40de955c-9ff3-11eb-8b86-12bb97331649.png

4119ebde-9ff3-11eb-8b86-12bb97331649.png

2PipeCNN可實(shí)現(xiàn)性

PipeCNN是一個(gè)基于OpenCL的FPGA實(shí)現(xiàn)大型卷積網(wǎng)絡(luò)的加速器。

PipeCNN解析文檔:

PipeCNN論文解析:用OpenCL實(shí)現(xiàn)FPGA上的大型卷積網(wǎng)絡(luò)加速

github地址:https://github.com/doonny/PipeCNN#how-to-use

2.1 已實(shí)現(xiàn)的PipeCNN資源消耗

對(duì)于Altera FPGA,運(yùn)用 Intel‘s OpenCL SDK v16.1 toolset.

對(duì)于Xilinx FPGAs, the SDAccel development environment v2017.2 can be used.

413a8bc8-9ff3-11eb-8b86-12bb97331649.png

Xilinx’s KCU1500 (XCKU115 FPGA)(已經(jīng)有xilin的板子實(shí)現(xiàn)過pipeCNN,但是型號(hào)比zynq高很多)

硬件資源可以被三個(gè)宏調(diào)控,device/hw_param.cl. Change the following macros

VEC_SIZE

LANE_NUM

CONV_GP_SIZE_X

消耗資源為:

417dad0e-9ff3-11eb-8b86-12bb97331649.png

419045e0-9ff3-11eb-8b86-12bb97331649.png

3實(shí)現(xiàn)大型神經(jīng)網(wǎng)絡(luò)的方法

方案一:壓縮模型到《2.2MB,可實(shí)現(xiàn)在BRAM中

優(yōu)點(diǎn):1.速度快 2.實(shí)現(xiàn)方便

缺點(diǎn):1.模型壓縮難度 2.難以實(shí)現(xiàn)大型網(wǎng)絡(luò)

方案二:用FPGA調(diào)用DDR

優(yōu)點(diǎn):1.速度中等 2.可實(shí)現(xiàn)大型網(wǎng)絡(luò)

缺點(diǎn):調(diào)用DDR有難度,開發(fā)周期長

方案三:用片上單片機(jī)調(diào)用DDR(插入SD卡)分包傳入IPcore運(yùn)算

優(yōu)點(diǎn):可實(shí)現(xiàn)大型網(wǎng)絡(luò)

缺點(diǎn):速度較慢

4Virtex-7高端FPGA概覽

Virtex-7為高端FPGA,比Zynq高了一個(gè)檔次。

41b0185c-9ff3-11eb-8b86-12bb97331649.png

7系列FPGA相關(guān)文檔:

41d92422-9ff3-11eb-8b86-12bb97331649.png

原文標(biāo)題:Xilinx Zynq系列FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)中相關(guān)資源評(píng)估

文章出處:【微信公眾號(hào):FPGA之家】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • FPGA
    +關(guān)注

    關(guān)注

    1629

    文章

    21748

    瀏覽量

    603912
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4772

    瀏覽量

    100845

原文標(biāo)題:Xilinx Zynq系列FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)中相關(guān)資源評(píng)估

文章出處:【微信號(hào):zhuyandz,微信公眾號(hào):FPGA之家】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    ),是深度學(xué)習(xí)的代表算法之一。 一、基本原理 卷積運(yùn)算 卷積運(yùn)算是卷積神經(jīng)網(wǎng)絡(luò)的核心,用于提取圖像中的局部特征。 定義卷積核:
    的頭像 發(fā)表于 11-15 14:47 ?772次閱讀

    FPGA加速深度學(xué)習(xí)模型的案例

    FPGA(現(xiàn)場(chǎng)可編程門陣列)加速深度學(xué)習(xí)模型是當(dāng)前硬件加速領(lǐng)域的一個(gè)熱門研究方向。以下是一些FPGA加速深度學(xué)習(xí)模型的案例: 一、基于
    的頭像 發(fā)表于 10-25 09:22 ?240次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)何用卷積神經(jīng)網(wǎng)絡(luò)通常運(yùn)用在哪里

    和應(yīng)用場(chǎng)景。 圖像識(shí)別 圖像識(shí)別是卷積神經(jīng)網(wǎng)絡(luò)最廣泛的應(yīng)用之一。CNN能夠自動(dòng)學(xué)習(xí)圖像中的特征,實(shí)現(xiàn)對(duì)圖像的分類、識(shí)別和分析。以下是一些具體的應(yīng)用場(chǎng)景: 1.1 物體識(shí)別:CNN可以識(shí)別圖像中的物體,如貓、狗、汽車等。這在自動(dòng)駕
    的頭像 發(fā)表于 07-11 14:43 ?2534次閱讀

    FPGA實(shí)現(xiàn)LeNet-5卷積神經(jīng)網(wǎng)絡(luò)

    LeNet-5 是一個(gè)經(jīng)典的卷積神經(jīng)網(wǎng)絡(luò)(CNN),由 Yann LeCun 在 1990 年代設(shè)計(jì),主要用于手寫數(shù)字識(shí)別任務(wù)(如 MNIST 數(shù)據(jù)集)。隨著現(xiàn)場(chǎng)可編程門陣列(FPGA)技術(shù)的發(fā)展
    的頭像 發(fā)表于 07-11 10:27 ?2279次閱讀

    如何在FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)

    可編程門陣列(FPGA)作為一種靈活、高效的硬件實(shí)現(xiàn)方式,為神經(jīng)網(wǎng)絡(luò)加速提供了新的思路。本文將從FPGA
    的頭像 發(fā)表于 07-10 17:01 ?2072次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)示例

    分類。 1. 卷積神經(jīng)網(wǎng)絡(luò)的基本概念 1.1 卷積層(Convolutional Layer) 卷積層是CNN中的核心組件,用于提取圖像特征。卷積
    的頭像 發(fā)表于 07-03 10:51 ?455次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)原理

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 10:49 ?562次閱讀

    cnn卷積神經(jīng)網(wǎng)絡(luò)分類有哪些

    卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是一種深度學(xué)習(xí)模型,由多層卷積層和池
    的頭像 發(fā)表于 07-03 09:28 ?636次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)訓(xùn)練的是什么

    、訓(xùn)練過程以及應(yīng)用場(chǎng)景。 1. 卷積神經(jīng)網(wǎng)絡(luò)的基本概念 1.1 卷積神經(jīng)網(wǎng)絡(luò)的定義 卷積神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-03 09:15 ?428次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理與實(shí)現(xiàn)

    1.卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語言處理等領(lǐng)域。 卷積神經(jīng)網(wǎng)絡(luò)是一種前饋
    的頭像 發(fā)表于 07-02 16:47 ?606次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理和應(yīng)用范圍

    和應(yīng)用范圍。 一、卷積神經(jīng)網(wǎng)絡(luò)的基本原理 1. 卷積層(Convolutional Layer) 卷積層是CNN的核心組成部分,其主要功能是提取圖像中的局部特征。
    的頭像 發(fā)表于 07-02 15:30 ?1226次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)及其功能

    。 引言 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)分支,它通過模擬人腦神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和功能,實(shí)現(xiàn)對(duì)數(shù)據(jù)的自動(dòng)學(xué)習(xí)和特征提取。卷積神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)中的一種重要模型,它通過
    的頭像 發(fā)表于 07-02 14:45 ?2300次閱讀

    基于FPGA網(wǎng)絡(luò)加速設(shè)計(jì)實(shí)現(xiàn)

    首先是FPGA硬件的變化太多,各個(gè)模塊可配參數(shù)的變化(比如卷積模塊并行數(shù)的變化),另外一個(gè)是網(wǎng)絡(luò)模型多種多樣以及開源的網(wǎng)絡(luò)模型平臺(tái)也很多(tensorflow,pytorch等)。
    發(fā)表于 04-08 09:48 ?1046次閱讀
    基于<b class='flag-5'>FPGA</b>的<b class='flag-5'>網(wǎng)絡(luò)</b><b class='flag-5'>加速</b>設(shè)計(jì)<b class='flag-5'>實(shí)現(xiàn)</b>

    【國產(chǎn)FPGA+OMAPL138開發(fā)板體驗(yàn)】(原創(chuàng))5.FPGA的AI加速源代碼

    if; end process; end architecture Behavioral; 本人寫的這個(gè)程序極度簡化了在FPGA實(shí)現(xiàn)AI加速器的過程,例如并行處理、流水線
    發(fā)表于 02-12 16:18

    何用FPGA加速神經(jīng)網(wǎng)絡(luò)

    到底純FPGA適不適合這種大型神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)?這個(gè)問題其實(shí)我們不適合回答,但是FPGA廠商是的實(shí)際操作是很有權(quán)威性的,現(xiàn)在不論是Intel還是Xilinx都沒有在自己傳統(tǒng)的
    的頭像 發(fā)表于 01-24 09:51 ?951次閱讀
    如<b class='flag-5'>何用</b><b class='flag-5'>FPGA</b><b class='flag-5'>加速</b>神經(jīng)<b class='flag-5'>網(wǎng)絡(luò)</b>
    主站蜘蛛池模板: 奇米7777影视| 国产网站在线| 欧美黄色高清| 午夜小视频在线| 免费美剧在线观看| 一级毛片 在线播放| 国产日本在线播放| 色吧欧美| 狠狠色噜噜狠狠狠狠2018| 22222se男人的天堂| 午夜激情福利| 高清国产在线观看| 你懂的在线免费视频| 特级毛片免费看| 在线色网| 亚洲区视频在线观看| 国产高清毛片| 日本在线黄色网址| 午夜一级黄色片| 色综合久久98天天综合| 一本到在线观看视频不卡| 韩国床戏合集三小时hd中字| 欧美影院一区二区| 色五月在线视频| 伊人久久大香线蕉综合7| 热99在线视频| 成人啪啪免费视频| 在线免费观看h| 午夜 在线播放| 美女被草视频在线观看| 天天射天天怕| 国产三级跑| 亚洲午夜久久久久久91| 加勒比一本一道在线| 久热福利| 在线观看日本亚洲一区| 3344成年在线视频免费播放男男| 好爽好紧好大的免费视频国产 | 美女网站在线观看视频18| 日本网站黄色| 四虎影视永久地址|