在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度分析RNN的模型結(jié)構(gòu),優(yōu)缺點以及RNN模型的幾種應(yīng)用

智能感知與物聯(lián)網(wǎng)技術(shù)研究所 ? 來源:人工智能與算法學(xué)習(xí) ? 作者:人工智能與算法學(xué) ? 2021-05-13 10:47 ? 次閱讀

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的載體,而神經(jīng)網(wǎng)絡(luò)模型中,最經(jīng)典非RNN模型所屬,盡管它不完美,但它具有學(xué)習(xí)歷史信息的能力。后面不管是encode-decode 框架,還是注意力模型,以及自注意力模型,以及更加強(qiáng)大的Bert模型家族,都是站在RNN的肩上,不斷演化、變強(qiáng)的。

這篇文章,闡述了RNN的方方面面,包括模型結(jié)構(gòu),優(yōu)缺點,RNN模型的幾種應(yīng)用,RNN常使用的激活函數(shù),RNN的缺陷,以及GRU,LSTM是如何試圖解決這些問題,RNN變體等。

這篇文章最大特點是圖解版本,其次語言簡練,總結(jié)全面。

概述

傳統(tǒng)RNN的體系結(jié)構(gòu)。Recurrent neural networks,也稱為RNNs,是一類允許先前的輸出用作輸入,同時具有隱藏狀態(tài)的神經(jīng)網(wǎng)絡(luò)。它們通常如下所示:

e2923ba4-b364-11eb-bf61-12bb97331649.png

對于每一時步 , 激活函數(shù) ,輸出 被表達(dá)為:

這里是時間維度網(wǎng)絡(luò)的共享權(quán)重系數(shù)

是激活函數(shù)

e2a0bf26-b364-11eb-bf61-12bb97331649.png

下表總結(jié)了典型RNN架構(gòu)的優(yōu)缺點:

處理任意長度的輸入 計算速度慢
模型形狀不隨輸入長度增加 難以獲取很久以前的信息
計算考慮了歷史信息 無法考慮當(dāng)前狀態(tài)的任何未來輸入
權(quán)重隨時間共享
優(yōu)點 缺點

RNNs應(yīng)用

RNN模型主要應(yīng)用于自然語言處理和語音識別領(lǐng)域。下表總結(jié)了不同的應(yīng)用:

一對一

e2d8925c-b364-11eb-bf61-12bb97331649.png

傳統(tǒng)神經(jīng)網(wǎng)絡(luò)

一對多

e2e514fa-b364-11eb-bf61-12bb97331649.png

音樂生成

多對一

e2f52660-b364-11eb-bf61-12bb97331649.png

e303047e-b364-11eb-bf61-12bb97331649.png

機(jī)器翻譯e31699da-b364-11eb-bf61-12bb97331649.png

RNN 類型圖解例子

對于RNN網(wǎng)絡(luò),所有時間步的損失函數(shù) 是根據(jù)每個時間步的損失定義的,如下所示:損失函數(shù)

時間反向傳播

在每個時間點進(jìn)行反向傳播。在時間步,損失相對于權(quán)重矩陣的偏導(dǎo)數(shù)表示如下:

處理長短依賴

常用激活函數(shù)

RNN模塊中最常用的激活函數(shù)描述如下:

5e33166de-b364-11eb-bf61-12bb97331649.png

e33ef948-b364-11eb-bf61-12bb97331649.png

e3539de4-b364-11eb-bf61-12bb97331649.png

SigmoidTanhRELU

梯度消失/爆炸

在RNN中經(jīng)常遇到梯度消失和爆炸現(xiàn)象。之所以會發(fā)生這種情況,是因為很難捕捉到長期的依賴關(guān)系,因為乘法梯度可以隨著層的數(shù)量呈指數(shù)遞減/遞增。

梯度修剪

梯度修剪是一種技術(shù),用于執(zhí)行反向傳播時,有時遇到的梯度爆炸問題。通過限制梯度的最大值,這種現(xiàn)象在實踐中得以控制。

e367c954-b364-11eb-bf61-12bb97331649.png

門的類型

為了解決消失梯度問題,在某些類型的RNN中使用特定的門,并且通常有明確的目的。它們通常標(biāo)注為,等于:

其中,是特定于門的系數(shù),是sigmoid函數(shù)。主要內(nèi)容總結(jié)如下表:

Gated Recurrent Unit(GRU)和長-短期記憶單元(LSTM)處理傳統(tǒng)RNNs遇到的消失梯度問題,LSTM是GRU的推廣。下表總結(jié)了每種結(jié)構(gòu)的特征方程:GRU/LSTM

e3730e68-b364-11eb-bf61-12bb97331649.png

注:符號表示兩個向量之間按元素相乘。

RNN的變體

下表總結(jié)了其他常用的RNN模型:

e3a643e6-b364-11eb-bf61-12bb97331649.png

e3e31410-b364-11eb-bf61-12bb97331649.png

Bidirectional (BRNN)Deep (DRNN)

編輯:jq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 函數(shù)
    +關(guān)注

    關(guān)注

    3

    文章

    4331

    瀏覽量

    62622
  • rnn
    rnn
    +關(guān)注

    關(guān)注

    0

    文章

    89

    瀏覽量

    6891

原文標(biāo)題:神經(jīng)網(wǎng)絡(luò)RNN圖解!

文章出處:【微信號:tyutcsplab,微信公眾號:智能感知與物聯(lián)網(wǎng)技術(shù)研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    RNN的損失函數(shù)與優(yōu)化算法解析

    函數(shù)有以下幾種: 交叉熵?fù)p失函數(shù) :交叉熵(Cross Entropy)是一種評估兩個概率分布之間差異的度量方法,即通過比較模型預(yù)測的概率分布和真實概率分布之間的差異,來評估模型訓(xùn)練的性能。在
    的頭像 發(fā)表于 11-15 10:16 ?408次閱讀

    RNN在實時數(shù)據(jù)分析中的應(yīng)用

    隨著大數(shù)據(jù)時代的到來,實時數(shù)據(jù)分析變得越來越重要。在眾多的機(jī)器學(xué)習(xí)模型中,遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Networks,簡稱RNN)因其在處理序列數(shù)據(jù)方面的優(yōu)勢,被廣泛應(yīng)用于實時數(shù)據(jù)
    的頭像 發(fā)表于 11-15 10:11 ?294次閱讀

    RNN的應(yīng)用領(lǐng)域及未來發(fā)展趨勢

    循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network, RNN)是一種適合于處理序列數(shù)據(jù)的深度學(xué)習(xí)模型。由于其獨特的循環(huán)結(jié)構(gòu)RNN
    的頭像 發(fā)表于 11-15 10:10 ?445次閱讀

    RNN與LSTM模型的比較分析

    RNN(循環(huán)神經(jīng)網(wǎng)絡(luò))與LSTM(長短期記憶網(wǎng)絡(luò))模型深度學(xué)習(xí)領(lǐng)域都具有處理序列數(shù)據(jù)的能力,但它們在結(jié)構(gòu)、功能和應(yīng)用上存在顯著的差異。以下是對RN
    的頭像 發(fā)表于 11-15 10:05 ?440次閱讀

    深度學(xué)習(xí)中RNN的優(yōu)勢與挑戰(zhàn)

    循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)是深度學(xué)習(xí)領(lǐng)域中處理序列數(shù)據(jù)的基石。它們通過在每個時間步長上循環(huán)傳遞信息,使得網(wǎng)絡(luò)能夠捕捉時間序列數(shù)據(jù)中的長期依賴關(guān)系。然而,盡管RNN在某些任務(wù)上表現(xiàn)出色,它們也面臨著一些
    的頭像 發(fā)表于 11-15 09:55 ?405次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)RNN的區(qū)別

    深度學(xué)習(xí)領(lǐng)域,循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)因其能夠處理序列數(shù)據(jù)而受到廣泛關(guān)注。然而,傳統(tǒng)RNN在處理長序列時存在梯度消失或梯度爆炸的問題。為了解決這一問題,LSTM(長短期記憶)神經(jīng)網(wǎng)絡(luò)應(yīng)運(yùn)而生。 循環(huán)
    的頭像 發(fā)表于 11-13 09:58 ?315次閱讀

    AI大模型與小模型優(yōu)缺點

    在人工智能(AI)的廣闊領(lǐng)域中,模型作為算法與數(shù)據(jù)之間的橋梁,扮演著至關(guān)重要的角色。根據(jù)模型的大小和復(fù)雜度,我們可以將其大致分為AI大模型和小模型。這兩種
    的頭像 發(fā)表于 07-10 10:39 ?2749次閱讀

    CNN與RNN的關(guān)系?

    深度學(xué)習(xí)的廣闊領(lǐng)域中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)是兩種極為重要且各具特色的神經(jīng)網(wǎng)絡(luò)模型。它們各自在圖像處理、自然語言處理等領(lǐng)域展現(xiàn)出卓越的性能。本文將從概念、原理、應(yīng)用場景及代碼示例等方面詳細(xì)探討CNN與
    的頭像 發(fā)表于 07-08 16:56 ?759次閱讀

    rnn是什么神經(jīng)網(wǎng)絡(luò)模型

    RNN(Recurrent Neural Network,循環(huán)神經(jīng)網(wǎng)絡(luò))是一種具有循環(huán)結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò)模型,它能夠處理序列數(shù)據(jù),并對序列中的元素進(jìn)行建模。RNN在自然語言處理、語音識別、
    的頭像 發(fā)表于 07-05 09:50 ?613次閱讀

    rnn是什么神經(jīng)網(wǎng)絡(luò)

    時間步的輸入,從而實現(xiàn)對時間序列數(shù)據(jù)的處理。RNN的循環(huán)結(jié)構(gòu)使得網(wǎng)絡(luò)能夠在處理當(dāng)前時間步的數(shù)據(jù)時,考慮到之前
    的頭像 發(fā)表于 07-05 09:49 ?686次閱讀

    rnn神經(jīng)網(wǎng)絡(luò)模型原理

    的應(yīng)用。本文將介紹RNN的原理、結(jié)構(gòu)、優(yōu)化方法以及實際應(yīng)用。 RNN的基本原理 1.1 循環(huán)結(jié)構(gòu) RNN
    的頭像 發(fā)表于 07-04 15:40 ?595次閱讀

    RNN神經(jīng)網(wǎng)絡(luò)適用于什么

    RNN(Recurrent Neural Network,循環(huán)神經(jīng)網(wǎng)絡(luò))是一種具有循環(huán)結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò),它可以處理序列數(shù)據(jù),具有記憶功能。RNN在許多領(lǐng)域都有廣泛的應(yīng)用,以下是一些RNN
    的頭像 發(fā)表于 07-04 15:04 ?995次閱讀

    什么是RNN(循環(huán)神經(jīng)網(wǎng)絡(luò))?RNN的基本原理和優(yōu)缺點

    的時序信息和語義信息。RNN的提出基于記憶模型的想法,期望網(wǎng)絡(luò)能夠記住前面出現(xiàn)的特征,并依據(jù)這些特征推斷后續(xù)的結(jié)果。由于其獨特的循環(huán)結(jié)構(gòu),RNN在自然語言處理(NLP)、語音識別、時間
    的頭像 發(fā)表于 07-04 11:48 ?3647次閱讀

    NLP模型RNN與CNN的選擇

    在NLP中的應(yīng)用場景、工作原理、優(yōu)缺點,以及在選擇時應(yīng)考慮的關(guān)鍵因素,以期為讀者提供一個全面而深入的理解。
    的頭像 發(fā)表于 07-03 15:59 ?539次閱讀

    什么是RNN (循環(huán)神經(jīng)網(wǎng)絡(luò))?

    循環(huán)神經(jīng)網(wǎng)絡(luò) (RNN) 是一種深度學(xué)習(xí)結(jié)構(gòu),它使用過去的信息來提高網(wǎng)絡(luò)處理當(dāng)前和將來輸入的性能。RNN 的獨特之處在于該網(wǎng)絡(luò)包含隱藏狀態(tài)和循環(huán)。
    發(fā)表于 02-29 14:56 ?4051次閱讀
    什么是<b class='flag-5'>RNN</b> (循環(huán)神經(jīng)網(wǎng)絡(luò))?
    主站蜘蛛池模板: 性欧美xxxx视频| bt在线www天堂资源网| 日本三级视频| 国模吧一区二区三区精品视频| 永久免费精品影视网站| 成 人色 网 站999| 在线视频 亚洲| 狠狠干天天操| 国产精品第一页在线观看| 康熙古代高h细节肉爽文全文| 手机在线看片你懂得| 国内自拍网红在综合图区| 免费任我爽橹视频在线观看| 最新色站| 伊人99| 精品欧美小视频在线观看| 免费福利影院| 99热手机在线观看| 韩国三级精品| 在线观看黄的网站| 精品国产免费久久久久久婷婷| 日韩色爱| www.91久久| 一区二区三区四区无限乱码在线观看 | 国产操视频| 色多多18免费观看| 韩国三级中文字幕hd| 97精品伊人久久久大香线焦| 四虎影院网| 天堂网www在线资源| 在线观看免费视频网站色| 日本有色视频| 日日操免费视频| 推倒都市极品贵妇| 人人做人人爽人人爱| 性生活毛片| 男女激情做爰叫床声视频偷拍| 亚洲成人7777| 猛操在线| 日本韩国做暖暖小视频| 96一级毛片|