在一個嵌入式系統中,可能存在許多輸入或輸出的IO口,輸入有霍爾傳感器、紅外對管等,輸出有LED、電源控制開關等。
如果說硬件可以一次成型,那么隨便一份代碼都可以完成IO的配置工作,但研發階段的產品,硬件各種修改是難免的,每一次 IO 的修改,對于底層開發人員來說,可能都是一次挑戰。
因為一旦有某一個 IO 配置錯誤,或者原來的配置沒有修改正確(比如一個 IO 在原來的硬件適配中是輸入,之后的硬件需要修改成輸出),那么你很難查出來這是什么問題,因為這個時候不僅硬件修改了,軟件也修改了,你需要先定位到底是軟件問題還是硬件問題,所以一個好用的 IO 的配置框架就顯得很有必要了。
有道友會說,不如使用 CubeMx 軟件進行開發吧。
1、這個軟件適用于 ST 單片機,以前還能用,現在,除非你家里有礦,不然誰用的起STM32?基本上都國產化了(雖然有些單片機號稱兼容,但到底還是有些差異的)。
2、公司原本的代碼就是使用標準庫,只是因為IO 的變化,你就需要把整個庫換掉嗎?時間上允許嗎?你確定修改后不會出現大問題?
3、國產化的芯片可沒有所謂的標準庫和HAL庫供你選擇,每一家都有各自的庫,如果你的產品臨時換方案怎么辦?
4、HAL 效率問題。
今天魚鷹介紹一個簡單實用的框架,可用于快速增加或修改IO配置,甚至修改底層庫。
假設有3個 LED 作為輸出、3 個霍爾傳感器作為輸入:
輸入配置代碼:
#define GPIOx_Def GPIO_TypeDef*#define GPIOMode_Def GPIOMode_TypeDef
typedef struct{ GPIOx_Def gpio; uint16_t msk; GPIOMode_Def pull_up_down; } bsp_input_pin_def;
#define _GPIO_PIN_INPUT(id, pull, gpiox, pinx) [id].gpio = (GPIOx_Def)gpiox, [id].msk = (1 《《 pinx), [id].pull_up_down = (GPIOMode_Def)pull#define GPIO_PIN_INPUT(id, pull, gpiox, pinx) _GPIO_PIN_INPUT(id, pull, gpiox, pinx)
#define bsp_pin_get_port(gpiox) ((uint16_t)((GPIO_TypeDef *)gpiox)-》IDR)#define bsp_pin_get_value(variable,id) do{ bsp_pin_get_port(bsp_input_pin[id].gpio) & bsp_input_pin[id].msk ? variable |= (1 《《 id) : 0;} while(0)
#define BSP_GPIO_PUPD_NONE GPIO_Mode_IN_FLOATING#define BSP_GPIO_PUPD_PULLUP GPIO_Mode_IPU#define BSP_GPIO_PUPD_PULLDOWN GPIO_Mode_IPD
typedef enum{ PIN_INPUT_HALL_0 = 0, // 輸入 IO 定義 PIN_INPUT_HALL_1, PIN_INPUT_HALL_2, PIN_INPUT_MAX}bsp_pin_input_id_def;
static const bsp_input_pin_def bsp_input_pin [PIN_INPUT_MAX] = { GPIO_PIN_INPUT(PIN_INPUT_HALL_0, BSP_GPIO_PUPD_NONE, GPIOA, 0), GPIO_PIN_INPUT(PIN_INPUT_HALL_1, BSP_GPIO_PUPD_NONE, GPIOB, 8), GPIO_PIN_INPUT(PIN_INPUT_HALL_2, BSP_GPIO_PUPD_NONE, GPIOE, 9), };
// 單個 IO 初始化函數 void bsp_pin_init_input(GPIOx_Def gpiox, uint32_t msk, GPIOMode_TypeDef pull_up_down){ uint32_t temp;
assert_param((msk & 0xffff0000) == 0 && gpiox != 0);
temp = ((uint32_t) gpiox - (uint32_t) GPIOA) / ( (uint32_t) GPIOB - (uint32_t) GPIOA);
/* enable the led clock */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA 《《 temp, ENABLE);
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.GPIO_Mode = (GPIOMode_Def)pull_up_down; GPIO_InitStruct.GPIO_Pin = msk; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_Init((GPIO_TypeDef*)gpiox, &GPIO_InitStruct);}
// 所有 IO 初始化void gpio_input_init(){ bsp_input_pin_def *info;
info = (bsp_input_pin_def *)&bsp_input_pin;
for(int i = 0; i 《 sizeof(bsp_input_pin)/sizeof(bsp_input_pin[0]); i++) { bsp_pin_init_input(info-》gpio, info-》msk, info-》pull_up_down); info++; } }
// 最多支持 32 個 IO 輸入uint32_t bsp_input_all(void){ uint32_t temp = 0;
bsp_pin_get_value(temp, PIN_INPUT_HALL_0); bsp_pin_get_value(temp, PIN_INPUT_HALL_1); bsp_pin_get_value(temp, PIN_INPUT_HALL_2);
return temp;}
// 讀取單個 IO 狀態uint32_t bsp_input_level(bsp_pin_input_id_def id){ return (bsp_pin_get_port(bsp_input_pin[id].gpio) & bsp_input_pin[id].msk) ? 1 : 0;}
typedef enum{ HW_HAL_LEVEL_ACTIVE = 0, // 可直接修改為 0 或 1,另一個枚舉值自動修改為相反值 HW_HAL_LEVEL_NO_ACTIVE = !HW_HAL_LEVEL_ACTIVE,}hw_input_hal_status_def;
typedef struct { hw_input_hal_status_def hal_level0; uint8_t hal_level1; uint8_t hal_level2;}bsp_input_status_def;
bsp_input_status_def bsp_input_status;
int main(void){ USRAT_Init(9600);//必須,進入調試模式后點擊全速運行
gpio_input_init();
while(1) { uint32_t temp = bsp_input_all();
bsp_input_status.hal_level0 = (hw_input_hal_status_def)((temp 》》 PIN_INPUT_HALL_0) & 1); bsp_input_status.hal_level1 = ((temp 》》 PIN_INPUT_HALL_1) & 1); bsp_input_status.hal_level2 = ((temp 》》 PIN_INPUT_HALL_2) & 1); } }
調試的時候,我們可以很方便的查看每個 IO 的狀態是怎樣的,而不用管 0 或 1 到底代表什么意思:
輸出配置代碼:
#define GPIOx_Def GPIO_TypeDef*#define GPIOMode_Def GPIOMode_TypeDef
typedef struct{ GPIOx_Def gpio; uint32_t msk; uint32_t init_value; } bsp_output_pin_def;
#define _GPIO_PIN_OUT(id, gpiox, pinx, init) [id].gpio = gpiox, [id].msk = (1 《《 pinx), [id].init_value = init#define GPIO_PIN_OUT(id, gpiox, pinx, init) _GPIO_PIN_OUT(id, gpiox, pinx, init)
#define _bsp_pin_output_set(gpiox, pin) (gpiox)-》BSRR = pin#define bsp_pin_output_set(gpiox, pin) _bsp_pin_output_set(gpiox, pin)
#define _bsp_pin_output_clr(gpiox, pin) (gpiox)-》BRR = pin#define bsp_pin_output_clr(gpiox, pin) _bsp_pin_output_clr(gpiox, pin)
typedef enum{ PIN_OUTPUT_LED_G, PIN_OUTPUT_LED_R, PIN_OUTPUT_LED_B, PIN_OUTPUT_MAX}bsp_pin_output_id_def;
static const bsp_output_pin_def bsp_output_pin [PIN_OUTPUT_MAX] = { GPIO_PIN_OUT(PIN_OUTPUT_LED_G, GPIOA, 0, 0), GPIO_PIN_OUT(PIN_OUTPUT_LED_R, GPIOF, 15, 0), GPIO_PIN_OUT(PIN_OUTPUT_LED_B, GPIOD, 10, 0),};
void bsp_pin_init_output(GPIOx_Def gpiox, uint32_t msk, uint32_t init){ uint32_t temp;
assert_param((msk & 0xffff0000) == 0 && gpiox != 0);
temp = ((uint32_t) gpiox - (uint32_t) GPIOA) / ( (uint32_t) GPIOB - (uint32_t) GPIOA);
/* enable the led clock */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA 《《 temp, ENABLE);
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.GPIO_Mode = (GPIOMode_Def)GPIO_Mode_Out_PP; GPIO_InitStruct.GPIO_Pin = msk; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_Init((GPIO_TypeDef*)gpiox, &GPIO_InitStruct);
if(init == 0) { bsp_pin_output_clr(gpiox, msk); } else { bsp_pin_output_set(gpiox, msk); }}
void bsp_output_init(){ bsp_output_pin_def *info;
info = (bsp_output_pin_def *)&bsp_output_pin; for(int i = 0; i 《 sizeof(bsp_output_pin)/sizeof(bsp_output_pin[0]); i++) { bsp_pin_init_output(info-》gpio, info-》msk, info-》init_value); info++; }}
void bsp_output(bsp_pin_output_id_def id, uint32_t value){ assert_param(id 《 PIN_OUTPUT_MAX);
if(value == 0) { bsp_pin_output_clr(bsp_output_pin[id].gpio, bsp_output_pin[id].msk); } else { bsp_pin_output_set(bsp_output_pin[id].gpio, bsp_output_pin[id].msk); }}
int main(void){ USRAT_Init(9600);//必須,進入調試模式后點擊全速運行
bsp_output_init();
while(1) { bsp_output(PIN_OUTPUT_LED_G, 1); bsp_output(PIN_OUTPUT_LED_B, 0); bsp_output(PIN_OUTPUT_LED_R, 1); } }
這個框架有啥好處呢?
1、自動完成 GPIO 的時鐘初始化工作,也就是說你只需要修改引腳即可,不必關心時鐘配置,但對于特殊引腳(比如PB3),還是得另外配置才行。
2、應用和底層具體 IO 分離,這樣一旦修改了 IO,應用代碼不需要進行任何修改。
3、增加或刪減 IO 變得很簡單,增加 IO時,首先加入對應枚舉,然后就可以添加對應的 IO 了。刪除 IO時,只要屏蔽對應枚舉值和引腳即可。
4、參數檢查功能, IO 刪除時,因為屏蔽了對應的枚舉,所以編譯時可以幫你發現問題,而增加 IO 時,它可以幫你在運行時檢查該 IO是否進行配置了,可以防止因為失誤導致的問題。
5、更改庫時可以很方便,只需要修改對應的宏即可,目前可以順利在 GD32 和 STM32 庫進行快速更換。
6、對于輸入 IO 而言,可以方便的修改有效和無效狀態,防止硬件修改有效電平。對于輸出 IO 而言,可以設定初始 IO 電平狀態。
7、代碼簡單高效,盡可能的復用代碼,增加一個 IO 只需要很少的空間。
8、缺點就是,只對同種配置的 IO 可以這樣用。
編輯:jq
-
嵌入式系統
+關注
關注
41文章
3610瀏覽量
129604
原文標題:簡單實用IO輸入輸出框架
文章出處:【微信號:zhuyandz,微信公眾號:FPGA之家】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論