在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

STMCube.AI的高級特性

意法半導體中國 ? 來源:意法半導體中國 ? 作者:意法半導體中國 ? 2021-10-28 10:05 ? 次閱讀

STM32Cube.AI意法半導體AI生態(tài)系統(tǒng)的一部分,是STM32Cube的一個擴展包,它可以自動轉換和優(yōu)化預先訓練的神經(jīng)網(wǎng)絡模型并將生成的優(yōu)化庫集成到用戶項目中,從而擴展了STM32CubeMX的功能。它還提供幾種在桌面PC和STM32上驗證神經(jīng)網(wǎng)絡模型以及測量模型性能的方法,而無需用戶手工編寫專門的C語言代碼。

上一篇文章大致介紹了STMCube.AI的基本特性,以及其工作流程。

本文將更深入地介紹它的一些高級特性。將涉及以下主題:

運行時環(huán)境支持:Cube.AI vs TensorFlow Lite

量化支持

圖形流與存儲布局優(yōu)化

可重定位的二進制模型支持

運行時環(huán)境支持:Cube.AI vs TensorFlow Lite

STM32Cube.AI支持兩種針對不同應用需求的運行時環(huán)境:Cube.AI和TensorFlow Lite。作為默認的運行時環(huán)境,Cube.AI是專為STM32高度優(yōu)化的機器學習庫。而TensorFlow Lite for Microcontroller是由谷歌設計,用于在各種微控制器或其他只有幾KB存儲空間的設備上運行機器學習模型的。其被廣泛應用于基于MCU的應用場景。STM32Cube.AI集成了一個特定的流程,可以生成一個即時可用的STM32 IDE項目,該項目內(nèi)嵌TensorFlow Lite for Microcontrollers運行時環(huán)境(TFLm)以及相關的TFLite模型。這可以被看作是Cube.AI運行時環(huán)境的一個替代方案,讓那些希望擁有一個跨多個項目的通用框架的開發(fā)人員也有了選擇。

雖然這兩種運行時環(huán)境都是為資源有限的MCU而設計,但Cube.AI在此基礎上針對STM32的獨特架構進行了進一步優(yōu)化。因此,TensorFlow Lite更適合有跨平臺可移植性需求的應用,而Cube.AI則更適合對計算速度和內(nèi)存消耗有更高要求的應用。

下表展示了兩個運行時環(huán)境之間的性能比較(基于一個預訓練的神經(jīng)網(wǎng)絡參考模型)。評價指標是在STM32上的推斷時間和內(nèi)存消耗。

f0560440-378b-11ec-82a8-dac502259ad0.png

如表中所示,對于同一模型,Cube.AI運行時環(huán)境比TFLite運行時環(huán)境節(jié)約了大概20%的flash存儲和約8%的RAM存儲。此外,它的運行速度幾乎比TFLite運行時環(huán)境快了2倍。

對于TFLite模型,用戶可以在STM32Cube.AI的網(wǎng)絡配置菜單中對2個運行時環(huán)境進行選擇。

量化支持

量化是一種被廣泛使用的優(yōu)化技術,它將32位浮點模型壓縮為位數(shù)更少的整數(shù)模型,在精度只略微下降的情況下,減少了存儲大小和運行時的內(nèi)存峰值占用,也減少了CPU/MCU的推斷時間和功耗。量化模型對整數(shù)張量而不是浮點張量執(zhí)行部分或全部操作。它是面向拓撲、特征映射縮減、剪枝、權重壓縮等各種優(yōu)化技術的重要組成部分,可應用在像MCU一樣資源受限的運行時環(huán)境。

通常有兩種典型的量化方法:訓練后量化(PTQ)和量化訓練(QAT)。PTQ相對容易實現(xiàn),它可以用有限的具有代表性的數(shù)據(jù)集來量化預先訓練好的模型。而QAT是在訓練過程中完成的,通常具有更高的準確度。

STM32Cube.AI通過兩種不同的方式直接或間接地支持這兩種量化方法:

首先,它可以用來部署一個由PTQ或QAT過程生成的TensorFlow Lite量化模型。在這種情況下,量化是由TensorFlow Lite框架完成的,主要是通過“TFLite converter” utility導出TensorFlow Lite文件。

其次,其命令行接口(CLI)還集成了一個內(nèi)部的訓練后量化(PTQ)的過程,支持使用不同的量化方案對預訓練好的Keras模型進行量化。與使用TFLite Converter工具相比,該內(nèi)部量化過程提供了更多的量化方案,并在執(zhí)行時間和精確度方面有更好的表現(xiàn)。

下表顯示了在STM32上部署量化模型(與原有浮點模型相比)的好處。此表使用FD-MobileNet作為基準模型,共有12層,參數(shù)大小145k,MACC操作數(shù)24M,輸入尺寸為224x224x3。

f2376d1c-378b-11ec-82a8-dac502259ad0.png

從表中很容易看出,量化模型節(jié)省了約4倍的flash存儲和RAM存儲,且運行速度提高了約3倍,而精確度僅僅下降了0.7%。

如果已經(jīng)安裝了X-Cube-AI包,用戶可以通過以下路徑找到關于如何使用命令行界面(CLI)進行量化的教程

C:UsersusernameSTM32CubeRepositoryPacksSTMicroelectronicsX-CUBE-AI7.0.0Documentationquantization.html。

在文檔的末尾還附上了一個快速實踐示例:“量化一個MNIST模型”。

圖形流與存儲布局優(yōu)化

除了量化技術,STM32Cube.AI還通過使用其C代碼生成器的優(yōu)化引擎,針對推理時間優(yōu)化內(nèi)存使用(RAM & ROM)。該引擎基于無數(shù)據(jù)集的方法,無需驗證或測試數(shù)據(jù)集來應用壓縮和優(yōu)化算法

第一種方法:權重/偏置項壓縮,采用k -均值聚類算法。該壓縮算法僅適用于全連接層。其優(yōu)勢是壓縮速度快,但是結果并不是無損的,最終的精度可能會受到影響。STM32Cube.AI提供“驗證”功能,用于對所生成的C模型中產(chǎn)生的誤差進行評估。

“壓縮”選項可以在STM32Cube.AI的網(wǎng)絡配置中激活,如下圖所示:

第二種方法:操作融合,通過合并層來優(yōu)化數(shù)據(jù)布局和相關的計算核。轉換或優(yōu)化過程中會刪除一些層(如“Dropout”、“Reshape”),而有些層(如非線性層以及卷積層之后的池化層)會被融合到前一層中。其好處是轉換后的網(wǎng)絡通常比原始網(wǎng)絡層數(shù)少,降低了存儲器中的數(shù)據(jù)吞吐需求。

最后一種方法是優(yōu)化的激活項存儲。其在內(nèi)存中定義一個讀寫塊來存儲臨時的隱藏層值(激活函數(shù)的輸出)。此讀寫塊可以被視為推理函數(shù)使用的暫存緩沖區(qū),在不同層之間被重復使用。因此,激活緩沖區(qū)的大小由幾個連續(xù)層的最大存儲需求決定。比如,假設有一個3層的神經(jīng)網(wǎng)絡,每一層的激活值分別有5KB, 12KB和3KB,那么優(yōu)化后的激活緩沖區(qū)大小將是12KB,而不是20KB。

可重定位的二進制模型支持

非可重定位方法(或“靜態(tài)”方法)指的是:生成的神經(jīng)網(wǎng)絡C文件被編譯并與最終用戶應用程序堆棧靜態(tài)鏈接在一起。

如下圖所示,所有對象(包括神經(jīng)網(wǎng)絡部分和用戶應用程序)根據(jù)不同的數(shù)據(jù)類型被一起鏈接到不同的部分。在這種情況下,當用戶想要對功能進行部分更新時(比如只更新神經(jīng)網(wǎng)絡部分),將需要對整個固件進行更新。

相反,可重定位二進制模型指定一個二進制對象,該對象可以安裝和執(zhí)行在STM32內(nèi)存子系統(tǒng)的任何位置。它是所生成的神經(jīng)網(wǎng)絡C文件的編譯后的版本,包括前向核函數(shù)以及權重。其主要目的是提供一種靈活的方法來更新AI相關的應用程序,而無需重新生成和刷寫整個終端用戶固件。

生成的二進制對象是一個輕量級插件。它可以從任何地址(位置無關的代碼)運行,其數(shù)據(jù)也可放置于內(nèi)存中的任何地方(位置無關的數(shù)據(jù))。

STM32Cube.AI簡單而高效的AI可重定位運行時環(huán)境可以將其實例化并使用它。STM32固件中沒有內(nèi)嵌復雜的資源消耗型動態(tài)鏈接器,其生成的對象是一個獨立的實體,運行時不需要任何外部變量或函數(shù)。

下圖的左側部分是神經(jīng)網(wǎng)絡的可重定位二進制對象,它是一個自給自足的獨立實體,鏈接時將被放置于終端用戶應用程序的一個單獨區(qū)域中(右側部分)。它可以通過STM32Cube.AI的可重定位運行時環(huán)境被實例化以及動態(tài)鏈接。因此,用戶在更新AI模型時只需要更新這部分二進制文件。另外,如果有進一步的靈活性需求,神經(jīng)網(wǎng)絡的權重也可以選擇性地被生成為獨立的目標文件。

可重定位網(wǎng)絡可以在STM32Cube.AI的高級設置中激活

最后,作為意法半導體人工智能生態(tài)系統(tǒng)的核心工具,STM32Cube.AI提供許多基本和高級功能,以幫助用戶輕松創(chuàng)建高度優(yōu)化和靈活的人工智能應用。如需詳細了解特定解決方案或技術細節(jié),請隨時關注我們的后續(xù)文章。

責任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • mcu
    mcu
    +關注

    關注

    146

    文章

    17263

    瀏覽量

    351973
  • STM32
    +關注

    關注

    2270

    文章

    10918

    瀏覽量

    356803
  • AI
    AI
    +關注

    關注

    87

    文章

    31325

    瀏覽量

    269671
  • 模型
    +關注

    關注

    1

    文章

    3279

    瀏覽量

    48980

原文標題:AI技術專題之五:專為STM32 MCU優(yōu)化的STM32Cube.AI庫

文章出處:【微信號:STMChina,微信公眾號:意法半導體中國】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    【書籍評測活動NO.55】AI Agent應用與項目實戰(zhàn)

    出來,當前的AI Agent并不僅僅是簡單的對話機器人或根據(jù)固定流程的自動化程序,而是成為了一種能夠自主完成任務的智能體,它正在迅速改變?nèi)祟惖墓ぷ骱蜕罘绞健F浜诵?b class='flag-5'>特性包括自主性、學習能力、目標導向
    發(fā)表于 01-13 11:04

    數(shù)字電機控制的未來:一個MCU上的多個電機、嵌入式AI高級算法

    RA8T1 32位MCU采用Arm Cortex-M85內(nèi)核,采用氦氣技術,頻率高達480MHz,封裝針對電機或逆變器控制進行了優(yōu)化。與市場上的其他電機控制解決方案相比,該產(chǎn)品明顯更快、更先進,并為AI高級算法帶來了充足的動力,同時保持了對多個獨立電機的精確電子控制。
    發(fā)表于 11-20 14:33 ?676次閱讀
    數(shù)字電機控制的未來:一個MCU上的多個電機、嵌入式<b class='flag-5'>AI</b>和<b class='flag-5'>高級</b>算法

    PCB高級EMC設計

    PCB高級EMC設計 ?
    的頭像 發(fā)表于 11-16 11:28 ?1628次閱讀
    PCB<b class='flag-5'>高級</b>EMC設計

    Wilink8高級特性

    電子發(fā)燒友網(wǎng)站提供《Wilink8高級特性.pdf》資料免費下載
    發(fā)表于 11-08 15:58 ?0次下載
    Wilink8<b class='flag-5'>高級</b><b class='flag-5'>特性</b>

    昆侖萬維天工AI發(fā)布升級版AI高級搜索功能

    昆侖萬維公司近期正式推出了天工AI的最新版本,其中重點升級了AI高級搜索功能。這一新功能旨在滿足用戶在復雜問題解決、金融投資、科研學術以及文檔分析等多個領域的多樣化需求。 據(jù)了解,天工AI
    的頭像 發(fā)表于 11-07 10:47 ?509次閱讀

    AI for Science:人工智能驅(qū)動科學創(chuàng)新》第二章AI for Science的技術支撐學習心得

    非常高興本周末收到一本新書,也非常感謝平臺提供閱讀機會。 這是一本挺好的書,包裝精美,內(nèi)容詳實,干活滿滿。 關于《AI for Science:人工智能驅(qū)動科學創(chuàng)新》第二章“AI
    發(fā)表于 10-14 09:16

    安達發(fā)|APS高級排程高級物料需求計劃

    APS高級排程高級物料需求計劃是在制造業(yè)中非常重要的概念。它們分別涉及到生產(chǎn)計劃和物料管理,對于提高生產(chǎn)效率、降低成本和滿足客戶需求具有重要意義。下面我將詳細介紹這兩個概念及其在實際生產(chǎn)
    的頭像 發(fā)表于 09-25 17:49 ?342次閱讀
    安達發(fā)|APS<b class='flag-5'>高級</b>排程<b class='flag-5'>高級</b>物料需求計劃

    AI調(diào)試工具

    APIAI
    草帽王路飛
    發(fā)布于 :2024年09月02日 11:31:57

    下一代高功能新一代AI加速器(DRP-AI3):10x在高級AI系統(tǒng)高級AI中更快的嵌入處理

    電子發(fā)燒友網(wǎng)站提供《下一代高功能新一代AI加速器(DRP-AI3):10x在高級AI系統(tǒng)高級AI
    發(fā)表于 08-15 11:06 ?0次下載
    下一代高功能新一代<b class='flag-5'>AI</b>加速器(DRP-<b class='flag-5'>AI</b>3):10x在<b class='flag-5'>高級</b><b class='flag-5'>AI</b>系統(tǒng)<b class='flag-5'>高級</b><b class='flag-5'>AI</b>中更快的嵌入處理

    云開發(fā)AI助手

    AI
    草帽王路飛
    發(fā)布于 :2024年07月22日 14:41:54

    AI大模型與AI框架的關系

    多個領域取得顯著成果。而AI框架則是為開發(fā)和訓練AI模型提供的一套標準接口、特性庫和工具包,它集成了算法的封裝、數(shù)據(jù)的調(diào)用以及計算資源的使用,是AI算法開發(fā)的必備工具。
    的頭像 發(fā)表于 07-15 11:42 ?1187次閱讀

    STMCUBE如何設置IPV6地址?

    小弟最近在學習開發(fā)STMCUBE,請問遇到一個問題,STMCUBE 在設置LWIP關于IPV6配置的時候,如何設置IPV6地址,我在電腦PING IPV6的時候,PING哪個地址
    發(fā)表于 04-18 07:41

    Proteus仿真F103F401的編譯器怎么設置不了STMCube呢?

    Proteus仿真F103F401的編譯器怎么設置不了STMCube
    發(fā)表于 04-07 07:25

    ai_reloc_network.h引入后,ai_datatypes_format.h和formats_list.h報錯的原因?

    當準備使用神經(jīng)網(wǎng)絡的relocatable方式,將ai_reloc_network.h頭文件加入程序編譯后,ai_datatypes_format.h在cubeIDE和Keilc里分別報如下錯誤
    發(fā)表于 03-14 06:23

    NanoEdge AI的技術原理、應用場景及優(yōu)勢

    NanoEdge AI 是一種基于邊緣計算的人工智能技術,旨在將人工智能算法應用于物聯(lián)網(wǎng)(IoT)設備和傳感器。這種技術的核心思想是將數(shù)據(jù)處理和分析從云端轉移到設備本身,從而減少數(shù)據(jù)傳輸延遲、降低
    發(fā)表于 03-12 08:09
    主站蜘蛛池模板: 四虎免费影院在线播放| 手机看片1024久久| 日本免费福利视频| 视频一区二区不卡| 久久久久免费| 国产精品japanese人妖| 无遮挡很污很爽很黄的网站| 天天操天天做| 免费一级黄| 午夜黄色毛片| 日日操夜夜| 天天做天天操| 爱爱免费网站| 国产色婷婷免费视频| 明日花在线观看| 狠狠色噜噜狠狠狠狠奇米777| 人与牲动交xx| 快色视频在线观看| 国产精品美女一区二区三区| 久久sp| 大学生毛片| 日韩成人影院| 欧美tube6最新69| 精品国产免费久久久久久婷婷| 夜夜狠狠| 亚洲色图27p| 朱元璋传奇1998王耿豪版| 欧洲精品不卡1卡2卡三卡| 狼色网| 抽搐一进一出gif免费男男| 亚洲第一黄色网| 在线观看你懂得| 色婷婷久久合月综| 国产嫩草影院在线观看| 国产免费一区二区三区| 五月天欧美| 欧美黑人xxxxxxxxxx| 中文字幕在线天堂| 欧美日韩在线成人免费| 免费看欧美一级特黄a大片一| 欧美成人69|