來源:今日電機
今天,一起來聊聊電機噪聲的類別來源、鑒別方法以及控制方案。
電機中的噪聲
電機噪聲主要來自三個方面:空氣噪聲、機械噪聲和電磁噪聲,但有時也會將電路內(nèi)部噪聲列入噪聲源之一。電路內(nèi)部噪聲主要來自電路自勵、電源哼聲以及電路元件中的電子流起伏變化和自由電子的熱運動。
1. 空氣噪聲
空氣噪聲主要由于風(fēng)扇轉(zhuǎn)動,使空氣流動、撞擊、摩擦而產(chǎn)生。噪聲大小決定于風(fēng)扇大小、形狀、電機轉(zhuǎn)速高低和風(fēng)阻風(fēng)路等情況。
空氣噪聲的基本頻率
其中,N——風(fēng)扇葉片數(shù);n——電機轉(zhuǎn)速。
風(fēng)扇直徑越大,噪聲越大,減小風(fēng)扇直徑10%,可以減小噪聲2—3dB。但隨之冷量也會減少。當(dāng)風(fēng)葉邊緣與通風(fēng)室的間隙過小,就會產(chǎn)生笛聲(似吹笛聲)。如果風(fēng)葉形狀與風(fēng)扇的結(jié)構(gòu)不合理,造成渦流,同樣也會產(chǎn)生噪聲。由于風(fēng)扇剛度不夠,受氣流撞擊時發(fā)生振動,也會增加噪聲。此外,轉(zhuǎn)于有凸出部分,也會引起噪聲。
空氣噪聲主要由于風(fēng)扇轉(zhuǎn)動,使空氣流動、撞擊、摩擦而產(chǎn)生。噪聲大小決定于風(fēng)扇大小、形狀、電機轉(zhuǎn)速高低和風(fēng)阻風(fēng)路等情況。
空氣噪聲的基本頻率
則滾珠的旋轉(zhuǎn)頻率式中:dr——滾珠直徑(mm)d1——軸承內(nèi)圈滾道的直徑(mm)d2——軸承外圈滾道的直徑(mm)
保持架的旋轉(zhuǎn)頻率
其中,N——風(fēng)扇葉片數(shù);n——電機轉(zhuǎn)速(RPM)。
而軸承內(nèi)外圈滾道中的波紋、凹坑、超糙度是引起噪聲的主要原因。
試驗表明,噪聲聲壓級與滾動面的波紋高度和波紋數(shù)的乘積成正比。此外,徑向游隙的大小,也影響噪聲,減小徑向游隙,可降低噪聲,但是徑向游隙小的軸承要求配用在兩軸承室同心度高的機殼和端蓋,并且對轉(zhuǎn)子同軸度的要求提高。
同時潤滑脂質(zhì)量的優(yōu)劣也是影響噪聲的主要原因。噪聲與潤滑脂的粘度有關(guān),試驗表明,噪聲隨粘度增大而減小,但粘變增大到一定數(shù)值后,噪聲反而增大,這是因為油膜對振動有援沖作用,粘度大、噪聲低,但當(dāng)粘度過大,轉(zhuǎn)動時出現(xiàn)攪拌聲。
安裝誤差對軸承噪聲的影響。軸承的安裝誤差超過某一臨界值會使軸承噪聲急劇增大,而臨界角隨軸承徑向游隙減小而減小。圖一表示某單列內(nèi)心軸承在不同徑向游隙時安裝誤差角對噪聲的關(guān)系。
3. 電磁噪聲
作用在電機定、轉(zhuǎn)子空氣隙中的交變電磁力會使電機定轉(zhuǎn)子產(chǎn)生振動及噪聲。由于氣隙磁場不僅有基波而且還有一系列高次諧波存在,這些磁場相互作用將產(chǎn)生周期性的作用力,基波及高次諧波電磁力均會引起振動及噪聲。
電磁聲頻率分布大多在100-4000Hz之間。振動及噪聲強度的大小與電磁力的大小和定子、轉(zhuǎn)子剛度有關(guān)。當(dāng)激發(fā)振動的電磁力與振動的零部件的自振頻率相吻合時,將會產(chǎn)生共振,振動及噪聲也將顯著增加。
電磁力有徑向分量和切向分量,電磁力徑向分量在引起電機振動及噪聲方面起主要作用,它使定子鐵心產(chǎn)生徑向振動,徑向振動產(chǎn)生的噪聲為電機電磁噪聲的主要成分。在采用單數(shù)槽轉(zhuǎn)子沖片時,槽致噪聲成為電磁噪聲的最主要部分。電機運行過程中,單數(shù)槽的轉(zhuǎn)子鐵芯周期性地受到單邊磁拉力的變化所產(chǎn)生的,其原因可通過圖來解釋。
在圖(a)中,上磁極極弧下覆蓋三個轉(zhuǎn)子槽,而下磁極極弧只覆蓋兩個轉(zhuǎn)子槽,此時上部磁拉力大,下部磁拉力小,使定子鐵芯有向上移動的趨勢。當(dāng)轉(zhuǎn)子轉(zhuǎn)動半個槽距后,則如圖(b)所示,此時下磁極極弧覆蓋了三個轉(zhuǎn)子槽,而上磁極極弦只覆蓋了兩個轉(zhuǎn)子槽,此時的磁拉力情況起了變化,下部磁拉力大,上部磁拉力小,因此定子鐵芯有向下移動的趨勢。所以在轉(zhuǎn)子旋轉(zhuǎn)過程中,定子鐵芯產(chǎn)生周期性的上下振動。同理,轉(zhuǎn)子受到了周期性變化的單邊磁拉力,從而引起轉(zhuǎn)子振動。
采用雙數(shù)槽轉(zhuǎn)子時,不會發(fā)生上述情況,但轉(zhuǎn)子旋轉(zhuǎn)時槽位變化,在氣隙中造成脈振磁場,也可能引起振動。
按照上面分析,所產(chǎn)生的電磁噪聲頻率
式中:Z ——轉(zhuǎn)子槽數(shù)
在電磁噪聲中,除上述原因所產(chǎn)生的噪聲外,還由于電流中的高次諧波分量,在定轉(zhuǎn)子氣產(chǎn)生諧波磁場,也會產(chǎn)生不均勻的力矩,造成振動而產(chǎn)生噪聲。
噪聲鑒別方法
1. 斷電法
利用電磁噪聲隨磁場強弱、負(fù)載電流大小以及轉(zhuǎn)換高低而變的特征,對空載運行的電動機靜聽一段時間后突然切斷電源,隨著電源的切斷部分噪聲會立即消失,此為電磁噪聲。停電后電機借慣性繼續(xù)運轉(zhuǎn)產(chǎn)生的噪聲則為機械噪聲。反復(fù)數(shù)次以期得到確定。
2. 改變電壓法
將電源電壓急速下降至一定限度(轉(zhuǎn)速無較大變化)時,如果電磁噪聲是電機噪聲的主要部分,則會隨電壓變化很大,而其他噪聲基本不變。
3. 電流測試法
若定子繞組不對稱或內(nèi)部斷相、匝間短路,則三相電流不平衡;若轉(zhuǎn)子斷籠或繞線式電機轉(zhuǎn)子三相不對稱,則定子電流有波動,以此來鑒別出電磁噪聲。
4. 拖動法
用低噪聲電動機拖動被試電機旋轉(zhuǎn),提起及放下碳刷數(shù)次,可鑒別出碳刷噪聲的影響。
5. 拆卸部件法
對于空氣動力噪聲具有穩(wěn)定的特征,可以通過取下風(fēng)扇(小型電動機)或外鼓風(fēng)機(大、中型電動機)前后噪聲變化的情況來鑒別。另外,更換不同外徑和型式的風(fēng)扇,在不同轉(zhuǎn)速下區(qū)分噪聲的差別,也可鑒別出風(fēng)扇噪聲。
噪聲控制方案
1. 合理設(shè)計電機的結(jié)構(gòu)
(1)正確選用風(fēng)扇材質(zhì)和結(jié)構(gòu):單向旋轉(zhuǎn)的高速電動機,可采用流線型后傾式離心式風(fēng)扇,對離心式風(fēng)扇,帶倒向環(huán)的比不帶倒向環(huán)的噪聲低;此外,盆式風(fēng)扇比大刀式風(fēng)扇噪聲低;鋁質(zhì)風(fēng)扇比尼龍風(fēng)扇噪聲低。
(2)改進(jìn)風(fēng)路:加大風(fēng)扇外緣與風(fēng)扇罩或端面內(nèi)腔間隙,取消風(fēng)道中的障礙,使風(fēng)流方向平滑,可改善噪聲。
(3)定子繞組采用合理的短距。
(4)異步電動機轉(zhuǎn)子采用相對傾斜的雙斜槽結(jié)構(gòu)以減少軸向力;直流電動機采用不均勻氣隙。交流電動機采用磁性槽楔,不但可以減少諧波損失提高效率,還可以減少由諧波磁場引起的電磁噪聲。
(5)使用中的電機產(chǎn)生“掃膛”時,可適當(dāng)增大氣隙以減少氣隙磁密。當(dāng)電機功率有裕量時,可將轉(zhuǎn)子圓周車去一部分,以增大氣隙,消除高次諧波引起的噪聲,但在減小的同時,增大了空載電流,并使功率因數(shù)有所降低。
(6)適當(dāng)控制軸承滾動面的波紋、凹坑、粗糙度及徑向間隙。
(7)提高換向器表面加工精度和光潔度以減少電刷噪聲。
(8)增加機座剛度及平衡度,必要時可用水平儀做一下地基的水平;目測一下電動機安裝角度與拖動的機械是否合適。
2.確保裝配工藝精良
(1)選用高質(zhì)量的軸承。軸承與轉(zhuǎn)軸或軸承與軸承座之間的配合應(yīng)適當(dāng),并控制好軸承熱套時的溫度及時間。
(2)轉(zhuǎn)子動平衡不好是產(chǎn)生機械噪聲的主要原因,所以要提高轉(zhuǎn)子的動平衡檢驗精度,盡量減少偏心的影響,保證電動機安裝時聯(lián)軸器的同心度。
(3)軸承潤滑脂選用合適型號且無雜質(zhì)。軸承內(nèi)腔所涂的潤滑脂量應(yīng)為軸承室內(nèi)部空間的1/3—2/3為宜。
(4)不同種類的軸承需按其安裝工藝的要求安裝軸承裝配原則上不允許采用銅棒擊打的方法,否則會由于軸承內(nèi)圈受力不均損傷軸承。采用熱套方法裝配軸承時,事先要仔細(xì)檢查軸承與軸頸的配合尺寸,因為熱套與冷套不同,熱套時套入軸承的過程中,不易發(fā)覺軸頸與軸承的配合公差和過盈程度是否適宜。軸承熱套后不應(yīng)移動電機或裝配其他附件以防止軸承移位。
編輯:jq
-
噪聲
+關(guān)注
關(guān)注
13文章
1122瀏覽量
47435 -
電機
+關(guān)注
關(guān)注
142文章
9028瀏覽量
145664
原文標(biāo)題:【分析】關(guān)于電機噪聲的鑒別與控制
文章出處:【微信號:motorcontrol365,微信公眾號:電機控制設(shè)計加油站】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論