石英光纖作為當今世界最重要的器件之一,被廣泛的應用于通信和傳感領域,隨著 5G 和物聯網的到來,光纖的作用正在從無源的電信傳輸介質擴展到光纖傳感,光纖設備和激光器等各個方面。隨之而來的是日益復雜的光纖的需求。然而,傳統的石英光纖制造業受限于光纖的材料和結構靈活性,不易實現光纖的多樣化和定制的功能。
近年來,利用增材制造或 3D 打印技術制造石英玻璃得到了廣泛的關注。解決了石英玻璃由于高溫和高粘度而產生的難以塑形的問題。但是,利用該技術制造的的石英材料較小,通常是十幾毫米量級的片狀玻璃或塊狀玻璃,這極大的限制了 3D 打印技術在石英光纖制造領域的應用。
鑒于此,來自哈爾濱工程大學的 楚玉石 博士和 張建中 教授,與澳大利亞新南威爾士大學 Gang-Ding Peng 教授合作,在光纖制造領域取得了突破性進展,利用數字光處理(縮寫為:DLP)3D打印技術成功制造了厘米級別的光纖預制棒,并通過拉纖時參數的控制獲得單模以及多摸光纖。在此基礎上,該課題組進一步延伸了此項工作,將鉍離子和鉺離子摻雜入單芯光纖和七芯光纖中,實現了多組分光纖及結構性光纖的制造。
該研究成果以“Additive Manufacturing Fiber Preforms for Structured Silica Fibers with Bismuth and Erbium Dopants(鉍鉺共摻雜具有結構性的石英光纖的增材制造)”為題在線發表在 Light: Advanced Manufacturing。
研究者利用商用的 DLP 3D 打印機固化了含有納米二氧化硅顆粒的紫外光敏樹脂,并在孔中按照需求加入功能性的纖芯材料。隨后利用馬弗爐對預制棒進行脫脂去除有機物,最后拉制成為光纖,如圖1所示。電子探針的結果顯示利用 3D 打印技術制造的光纖的纖芯和包層具有理想的元素分布。
圖1:3D打印鉍鉺共摻雜光纖的設計、制造以及結果圖
圖 2 展示了單芯和七芯鉍鉺共摻雜光纖的折射率分布,表明光纖具有良好的波導結構,并且根據折射率和光纖尺寸計算出單芯鉍鉺共摻雜光纖的截止波長位于 760 nm 附近。
圖2:3D打印單芯和七芯鉍鉺共摻雜光纖的折射率分布
利用截斷法對光纖的損耗進行了分析,損耗譜中存在著明顯的鉍與鉺的特征吸收峰,如圖 3(a)所示。與團隊之前的成果相比,光纖的損耗有了進一步的下降。在830 nm或980 nm激光器激發下可以獲得鉍與鉺的特征發射,并且僅以 LP01 的模式在光纖中傳輸,如圖 3(b)和(c)所示。
圖3:3D打印鉍鉺共摻雜光纖的吸收光譜、發射光譜以及模式分布
該工作將 3D 打印技術引入到石英光纖的制造中,并成功的制造了鉍鉺共摻雜的單芯光纖和七芯光纖。
雖然制造光纖的損耗較高且七芯光纖的纖芯形狀不夠完善,但是該技術有效的打破了傳統石英光纖制造領域的桎梏,例如 MCVD 制造多芯光纖時纖芯的精確定位與制造微結構光纖時繁瑣的堆積,有望為石英光纖的制造業帶來革命性變革。
審核編輯 :李倩
-
石英光纖
+關注
關注
0文章
3瀏覽量
6917 -
增材制造
+關注
關注
0文章
253瀏覽量
12793
原文標題:石英光纖的增材制造技術
文章出處:【微信號:bdtdsj,微信公眾號:中科院半導體所】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論