在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

用FPGA實現FFT算法的方法

FPGA之家 ? 來源:FPGA之家 ? 作者:FPGA之家 ? 2022-04-12 19:28 ? 次閱讀

基于FPGA的快速傅立葉變換

摘要:在對FFT(快速傅立葉變換)算法進行研究的基礎上,描述了用FPGA實現FFT的方法,并對其中的整體結構、蝶形單元及性能等進行了分析。

傅立葉變換是數字信號處理中的基本操作,廣泛應用于表述及分析離散時域信號領域。但由于其運算量與變換點數N的平方成正比關系,因此,在N較大時,直接應用DFT算法進行譜變換是不切合實際的。然而,快速傅立葉變換技術的出現使情況發生了根本性的變化。本文主要描述了采用FPGA來實現2k/4k/8k點FFT的設計方法。

1整體結構

一般情況下,N點的傅立葉變換對為:

其中,WN=exp(-2 pi/N)。X(k)和x(n)都為復數。與之相對的快速傅立葉變換有很多種,如DIT(時域抽取法)、DIF(頻域抽取法)、Cooley-Tukey和Winograd等。對于2n傅立葉變換,Cooley-Tukey算法可導出DIT和DIF算法。本文運用的基本思想是Cooley-Tukey算法,即將高點數的傅立葉變換通過多重低點數傅立葉變換來實現。雖然DIT與DIF有差別,但由于它們在本質上都是一種基于標號分解的算法,故在運算量和算法復雜性等方面完全一樣,而沒有性能上的優劣之分,所以可以根據需要任取其中一種,本文主要以DIT方法為對象來討論。

N=8192點DFT的運算表達式為:

式中,m=(4n1+n2)(2048k1+k2)(n=4n1+n2,k=2048k1+k2)其中n1和k2可取0,1,...,2047,k1和n2可取0,1,2,3。

由式(3)可知,8k傅立葉變換可由4×2k的傅立葉變換構成。同理,4k傅立葉變換可由2×2k的傅立葉變換構成。而2k傅立葉變換可由128×16的傅立葉變換構成。128的傅立葉變換可進一步由16×8的傅立葉變換構成,歸根結底,整個傅立葉變換可由基2、基4的傅立葉變換構成。2k的FFT可以通過5個基4和1個基2變換來實現;4k的FFT變換可通過6個基4變換來實現;8k的FFT可以通過6個基4和1個基2變換來實現。也就是說:FFT的基本結構可由基2/4模塊、復數乘法器、存儲單元和存儲器控制模塊構成,其整體結構如圖1所示。

RAM用來存儲輸入數據、運算過程中的中間結果以及運算完成后的數據,ROM用來存儲旋轉因子表。蝶形運算單元即為基2/4模塊,控制模塊可用于產生控制時序及地址信號,以控制中間運算過程及最后輸出結果。

2蝶形運算器的實現

基4和基2的信號流如圖2所示。圖中,若A=r0+j*i0,B=r1+j*i1,C=r2+j*i2,D=r3+j*i3是要進行變換的信號,Wk0=c0+j*s0=1,Wk1=c1+j*s1,Wk2=c2+j*s2,Wk3=c3+j*s3為旋轉因子,將其分別代入圖2中的基4蝶形運算單元,則有:

A′=[r0+(r1×c1-i1×s1)+(r2×c2-i2×s2)+(r3×c3-i3×s3)]+j[i0+(i1×c1+r1×s1)+(i2×c2+r2×s2)+(i3×c3+r3×s3)]?? (4)

B′=[r0+(i1×c1+r1×s1)-(r2×c2-i2×s2)-(i3×c3+r3×s3)]+j[i0-(r1×c1-i1×s1)-(i2×c2+r2×s2)+(r3×c3-i3×s3)] (5)

C′=[r0-(r1×c1-i1×s1)+(r2×c2-i2×s2)-(r3×c3-i3×s3)]+j[i0-(i1×c1+r1×s1)+(i2×c2+r2×s2)-(i3×c3+r3×s3)] (6)

D′=[r0-(i1×c1+r1×s1)-(r2×c2-i2×s2)+(i3×c3+r3×s3)]+j[i0+(r1×c1-i1×s1)-(i2×c2+r2×s2)-(r3×c3-i3×s3)]?? (7)

而在基2蝶形中,Wk0和Wk2的值均為1,這樣,將A,B,C和D的表達式代入圖2中的基2運算的四個等式中,則有:

A′=r0+(r1×c1-i1×s1)+j[i0+(i1×c1+r1×s1)]?? (8)

B′=r0- (r1×c1-i1×s1)+j[i0-(i1×c1+r1×s1)] (9)

C′=r2+(r3×c3-i3×s3)+j[i0+(i3×c3+r3×s3)]?? (10)

D′=r2-(r3×c3-i3×s3)+j[i0-(i3×c3+r3×s3)]?? (11)

在上述式(4)~(11)中有很多類同項,如i1×c1+r1×s1和r1×c1-i1×s1等,它們僅僅是加減號的不同,其結構和運算均類似,這就為簡化電路提供了可能。同時,在蝶形運算中,復數乘法可以由實數乘法以一定的格式來表示,這也為設計復數乘法器提供了一種實現的途徑。

以基4為例,在其運算單元中,實際上只需做三個復數乘法運算,即只須計算BWk1、CWk2和DWk3的值即可,這樣在一個基4蝶形單元里面,最多只需要3個復數乘法器就可以了。在實際過程中,在不提高時鐘頻率下,只要將時序控制好?煴憧衫?用流水線(Pipeline)技術并只用一個復數乘法器就可完成這三個復數乘法,大大節省了硬件資源。

3FFT的地址

FFT變換后輸出的結果通常為一特定的倒序,因此,幾級變換后對地址的控制必須準確無誤。

倒序的規律是和分解的方式密切相關的,以基8為例,其基本倒序規則如下:

基8可以用2×2×2**基2變換來表示,則其輸入順序則可用二進制序列(n1 n2 n3)來表示,變換結束后,其順序將變為(n3 n2 n1),如:X?煟埃保保?→ x?煟保保埃牐?即輸入順序為3,輸出時順序變為6。

更進一步,對于基16的變換,可由2×2×2×2,4×4,4×2×2等形式來構成,相對于不同的分解形式,往往會有不同的倒序方式。以4×4為例,其輸入順序可以用二進制序列(n1 n2 n3 n4)來表示變換結束后,其順序可變為((n3 n4)(n1 n2)),如:X?煟埃保保保?→ x?煟保保埃保牎<詞淙胨承蛭?7,輸出時順序變為13。

在2k/4k/8k的傅立葉變換中,由于要經過多次的基4和基2運算,因此,從每次運算完成后到進入下一次運算前,應對運算的結果進行倒序,以保證運算的正確性。

4旋轉因子

N點傅立葉變換的旋轉因子有著明顯的周期性和對稱性。其周期性表現為:

FFT之所以可使運算效率得到提高,就是利用

FFT之所以可使運算效率得到提高,就是利用了對稱性和周期性把長序列的DFT逐級分解成幾個序列的DFT,并最終以短點數變換來實現長點數變換。

根據旋轉因子的對稱性和周期性,在利用ROM存儲旋轉因子時,可以只存儲旋轉因子表的一部分,而在讀出時增加讀出地址及符號的控制,這樣可以正確實現FFT。因此,充分利用旋轉因子的性質,可節省70%以上存儲單元。

實際上,由于旋轉因子可分解為正、余弦函數的組合,故ROM中存的值為正、余弦函數值的組合。對2k/4k/8k的傅立葉變換來說,只是對一個周期進行不同的分割。由于8k變換的旋轉因子包括了2k/4k的所有因子,因此,實現時只要對讀ROM的地址進行控制,即可實現2k/4k/8k變換的通用。

5存儲器的控制

因FFT是為時序電路而設計的,因此,控制信號要包括時序的控制信號及存儲器的讀寫地址,并產生各種輔助的指示信號。同時在計算模塊的內部,為保證高速,所有的乘法器都須始終保持較高的利用率。這意味著在每一個時鐘來臨時都要向這些單元輸入新的操作數,而這一切都需要控制信號的緊密配合。

為了實現FFT的流形運算,在運算的同時,存儲器也要接收數據。這可以采用乒乓RAM的方法來完成。這種方式決定了實現FFT運算的最大時間。對于4k操作,其接收時間為4096個數據周期,這樣?煟疲疲緣淖畬笤慫閌奔渚褪牽矗埃梗陡鍪?據周期。另外,由于輸入數據是以一定的時鐘為周期依次輸入的,故在進行內部運算時,可以用較高的內部時鐘進行運算,然后再存入RAM依次輸出。

為節省資源,可對存儲數據RAM采用原址讀出原址寫入的方法,即在進行下一級變換的同時,首先應將結果回寫到讀出數據的RAM存貯器中;而對于ROM,則應采用與運算的數據相對應的方法來讀出存儲器中旋轉因子的值。

在2k/4k/8k傅立葉變換中,要實現通用性,控制器是最主要的模塊。2k、4k、8k變換具有不同的內部運算時間和存儲器地址,在設計中,針對不同的點數應設計不同的存儲器存取地址,同時,在完成變換后,還要對開始輸出有用信號的時刻進行指示。

6硬件的選擇

本設計的硬件實現選用的是現場可編程門陣列(FPGA)來滿足較高速度的需要。本系統在設計時選用的是ALTERA公司的STRATIX芯片,該芯片中包含有DSP單元,可以完成較為耗費資源的乘法器單元。同時,該器件也包含有大量存儲單元,從而可保證旋轉因子的精度。

除了一些專用引腳外,FPGA上幾乎所有的引腳均可供用戶使用,這使得FPGA信號處理方案具有非常好的I/O帶寬。大量的I/O引腳和多塊存儲器可使設計獲得優越的并行處理性能。其獨立的存儲塊可作為輸入/工作存儲區和結果的緩存區,這使得I/O可與FFT計算同時進行。在實現的時間方面,該設計能在4096個時鐘周期內完成一個4096點的FFT。若采用10MHz的輸入時鐘,其變換時間在200μs左右。而由于最新的FPGA使用了MultiTrack互連技術,故可在250MHz以下頻率穩定地工作,同時,FFT的實現時間也可以大大縮小。

FFT運算結果的精度與輸入數據的位數及運算過程中的位數有關,同時和數據的表示形式也有很大關系。一般來說,浮點方式比定點方式精度高。而在定點計算中,存儲器數據的位數越大,運算精度越高,使用的存儲單元和邏輯單元也越多。在實際應用中,應根據實際情況折衷選擇精度和資源。本設計通過MATLAB進行仿真證明:其實現的變換結果與MATLAB工具箱中的FFT函數相比,信噪比可以達到65db以上,完全可以滿足一般工程的實際應用要求。

原文標題:基于FPGA的快速傅立葉變換

文章出處:【微信公眾號:FPGA之家】歡迎添加關注!文章轉載請注明出處。

審核編輯:湯梓紅

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • FPGA
    +關注

    關注

    1629

    文章

    21736

    瀏覽量

    603421
  • 算法
    +關注

    關注

    23

    文章

    4612

    瀏覽量

    92901
  • FFT
    FFT
    +關注

    關注

    15

    文章

    434

    瀏覽量

    59385

原文標題:基于FPGA的快速傅立葉變換

文章出處:【微信號:zhuyandz,微信公眾號:FPGA之家】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    基于FPGA的超高速FFT硬件實現

    是處理數字信號如圖形、語音及圖像等領域的重要變換工具。快速傅里葉變換(FFT)是DFT的快速算法FFT算法的硬件實現一般有3種形式:1)使
    發表于 06-14 00:19

    FFT算法FPGA實現

    在信號處理中,FFT占有很重要的位置,其運算時間影響整個系統的性能。傳統的實現方法速度很慢,難以滿足信號處理的實時性要求。針對這個問題,本文研究了基于FPGA芯片的
    發表于 05-28 13:38

    基于FPGAFFT算法硬件實現

    本帖最后由 gk320830 于 2015-3-8 21:23 編輯 開始科創,老師給了我們一個題基于FPGAFFT算法硬件實現。但是什么都不會,想找些論文看看,求相關的論文
    發表于 05-24 22:14

    fpga實現FFT算法

    謝謝各位。。各位大神。。fpga實現FFT算法,最好是verilog hdl的。。或者推薦一些好書。。
    發表于 05-06 00:24

    FFT 算法的一種 FPGA 實現

    FPGA實現FFT 處理器的硬件結構。接收單元采用乒乓RAM 結構, 擴大了數據吞吐量。中間數據緩存單元采用雙口RAM , 減少了訪問RAM 的時鐘消耗。計算單元采用基 2 算法,
    發表于 11-21 15:55

    如何在FPGA實現硬件上的FFT算法

    能夠充分利用有限位長。這樣處理比定點方法擴大了動態范圍,并且提高了精度,比浮點運算在速度上有了提高。塊浮點結構如圖4所示。3 結 語著重討論基于FPGA的64點高速FFT算法
    發表于 06-17 09:01

    一種基于FPGA的可配置FFT IP核實現設計

    中,數字信號處理系統經常要進行高速、高精度的FFF運算。現場可編程邏輯陣列(FPGA)是一種可定制集成電路,具有面向數字信號處理算法的物理結構。FPGA
    發表于 07-03 07:56

    如何用FPGA實現FFT算法

    請問一下如何用FPGA實現FFT算法
    發表于 04-08 06:06

    利用FFT IP Core實現FFT算法

    利用FFT IP Core實現FFT算法 摘要:結合工程實踐,介紹了一種利用FFT IP Core實現
    發表于 01-16 10:04 ?6918次閱讀
    利用<b class='flag-5'>FFT</b> IP Core<b class='flag-5'>實現</b><b class='flag-5'>FFT</b><b class='flag-5'>算法</b>

    FPGA實現FFT算法

    FPGA實現FFT算法 引言  DFT(Discrete Fourier Transformation)是數字信號分析與處理如圖形、語音
    發表于 10-30 13:39 ?1611次閱讀
    <b class='flag-5'>用</b><b class='flag-5'>FPGA</b><b class='flag-5'>實現</b><b class='flag-5'>FFT</b><b class='flag-5'>算法</b>

    C語言實現FFT算法

    C語言實現FFT算法 /*****************fft programe*********************/#in
    發表于 10-30 13:39 ?6342次閱讀

    基于Xilinx_FPGA_IP核的FFT算法的設計與實現

    利用FPGA的IP核設計和實現FFT算法
    發表于 05-24 14:14 ?37次下載

    基于FPGAFFT實現方案

    在數字信號處理領域,FFT是應用非常廣泛的算法之一,在OFDM調制、GPS信號捕獲和雷達信號捕獲、頻偏估計、定時定位處理、高速圖像處理、保密無線通信和數字通信等領域均有應用。FFT傳統的實現
    發表于 11-09 10:58 ?11次下載
    基于<b class='flag-5'>FPGA</b>的<b class='flag-5'>FFT</b><b class='flag-5'>實現</b>方案

    基于新型FPGAFFT設計與實現

    基于新型FPGAFFT設計與實現設計方法
    發表于 06-17 17:07 ?48次下載

    采用FPGA實現FFT算法示例

     目前,硬件實現FFT算法的方案主要有:通用數字信號處理器(DSP)、FFT專用器件和現場可編程門陣列(FPGA)。DSP具有純軟件
    的頭像 發表于 05-11 15:31 ?2680次閱讀
    采用<b class='flag-5'>FPGA</b><b class='flag-5'>實現</b><b class='flag-5'>FFT</b><b class='flag-5'>算法</b>示例
    主站蜘蛛池模板: 亚洲国产成人在人网站天堂| 色多多在线观看高清免费| 色香婷婷| 丁香六月婷婷七月激情| 天堂中文最新版www| 亚洲天堂伦理| 三级黄色一级视频| 一本在线免费视频| 免费看国产黄色片| 视频一区日韩| 伊人天天操| h视频在线免费| 日本三级2018亚洲视频| 亚洲视频福利| 性感美女逼| 美女免费观看一区二区三区| 去毛片| 欲色视频| 国产papa| 4438x色| 免费一级毛片| 乱色伦图片区| 香淫| 午夜手机福利| 国产一区在线mmai| 黄色毛片免费网站| 5g影院午夜伴侣| 三浦理惠子中文在| 欧美性猛片xxxxⅹ免费| 亚洲毛片大全| 午夜无遮挡怕怕怕免费视频| 欧美亚洲h在线一区二区| 久久精品视频7| 欧美成人全部免费观看1314色| 日韩精品一级a毛片| 欧美成人天天综合天天在线| 亚洲地址一地址二地址三| 永久免费在线观看视频| 国产高清在线观看| yy6080一级毛片高清| 午夜.dj高清在线观看免费8|