在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

關于PCIe 6.0,你需要知道的!

路科驗證 ? 來源:路科驗證 ? 作者:路科驗證 ? 2022-04-17 10:04 ? 次閱讀

可以肯定地說,現在的計算世界如此豐富多彩,PCIe標準的貢獻功不可沒。

處理器面世的頭些年,整個計算領域的各個方面都在高速發展。但進入到上世紀80年代后,隨著處理器的速度越來越快。以至于當時流行的總線帶寬已經滿足不了CPU的需求,并逐漸成為制約計算機處理能力進一步提高的瓶頸。于是在1991年,Intel、IBM、HP、Compaq、DEC等100多家計算機公司成立了PCISIG,聯合推出PCI(Peripheral Component Interconnect),并于次年發布了PCI1.0標準。

但在后續的發展中,行業參與者發現PCI還是不能滿足總線的需求,于是他們又在接下來的日子里繼續對其進行更新升級,并于2003年推出了廣為人知的PCIe標準。和在PCI總線上同時掛接多個I/O設備不同,PCIe標準采用了點對點串行連接,物理上只能連接一個設備。通過在物理層、鏈路層和傳輸層的定義和升級,PCIe逐漸成為數據中心和計算應用中芯片間數據傳輸的行業標準。隨著終端的需求,也在今年1月正式進入了PCIe 6.0時代。

d2508a9e-bbf5-11ec-aa7f-dac502259ad0.png

如上圖所示,每一代的PCIe標準較之上一代,都實現了較大的速度提升。為了達成這個目的,PCIe 6.0做了一些不同以往的新升級。

PCIe 6.0改變了什么?

對于全新標準,首先從速度上看,和以往的標準一樣,PCIe 6.0同樣實現了翻倍提升——獲得了高達64GT/s的速率體驗。同時,新標準還克服了整個通道傳輸長度以及距離的限制,具備前向糾錯(FEC)以及固定大小數據包(Flit)等新特性。其中,在速度方面的提升,則主要是通過采用新的PAM4調制信號方式實現。

Rambus 戰略營銷副總裁Matt Jones的介紹我們得知,在PCIe 6.0以前,PCIe一直采用的是NRZ調制信號方式,也就是“ Non-Return-to-Zero ”——不歸零編碼。在實際應用中,這種編碼模式采用0或1兩個電壓等級,每一個時鐘周期只能傳輸1bit的信號。也就是說它只采用了高低兩種信號電平。因此,與采用四電平的PAM4相比,我們也將NRZ稱作PAM2 。

在以前的標準,這種編碼模式還是能夠實現其規定的速度,但進入到PCIe 6.0,PAM 4的采用是刻不容緩了,這主要與奈奎斯特頻率有關。根據維基百科,奈奎斯特頻率(英語:Nyquist frequency)是離散信號系統采樣頻率的一半,因瑞典裔美國工程師哈里·奈奎斯特(Harry Nyquist)或奈奎斯特-香農采樣定理得名。采樣定理指出,只要離散系統的奈奎斯特頻率高于被采樣信號的最高頻率或帶寬,就可以避免混疊現象。

回到PCIe標準上,據介紹,在進入PCIe 5.0時代后,數據速率的增加,也讓奈奎斯特頻率從8GHz加倍到16GHz,這就使得PCIe 5.0的頻率相關損耗比PCIe 4.0要嚴重得多。再加上電容耦合(噪聲和串擾)的增加,使得PCIe 5.0通道成為最難處理的NRZ通道。換而言之,如果PCIe 6.0仍然保留NRZ信號,則奈奎斯特頻率將增加到32GHz,通道損耗大于60dB,這對于實際系統而言太大了。這就是我們需要從NRZ更改為PAM-4的原因。這一變化意味著發射和接收的信號現在有四個不同的電壓電平,而不是兩個。

d2666152-bbf5-11ec-aa7f-dac502259ad0.png

PAM4是PAM(Pulse Amplitude Modulation,脈沖幅度調制)調制技術的一種。作為NRZ(NonReturn-to-Zero)后的熱門信號傳輸技術,PAM4是多階調制技術的代表,當前也被廣泛應用在高速信號互連領域。 Matt Jones也指出,通過PAM4,每個時鐘周期的數據傳輸可以達到2bit,而并不僅僅是單bit的數據傳輸。又因為PAM4采用四個不同的電平等級,因此能在每個時鐘周期表達2個數位,分別是00、01、10再到11。這就意味著在同樣的電壓波動范圍之內和同樣的時鐘周期內,由于PAM4的電壓等級比PAM2高了兩個,即眼圖中黑色的區域“眼睛“這個部分更多、更小了。

“這種變化帶來了另外兩個重要的影響,即更低的電壓裕度和更高的誤碼率,使得在設備中保證信號完整性成為了一個非常關鍵的難題。”Matt Jones強調。

至于前文談到的前向糾錯技術(FEC),按照Matt Jones所說,這是為了在保持數據傳輸速率的前提下解決PAM4本身的問題。而這種算法技術則恰好可以在數據傳輸鏈路中確保所有信號的完整性。

“同時,FEC技術的采納還改變了數據流控制單元的情況,要求我們也必須針對數據包本身的大小做出調整和改變。在PCIe 6.0之前的幾代規范采用的都是可變大小的數據包。但由于FEC技術的采納,PCIe 6.0必須采用固定大小數據包(FLIT),以更好地保證FEC技術的實現和操作。”Matt Jones接著說。

為了減少整體系統的能耗,PCIe 6.0還采用了顛覆式的L0p模式,其本質是通過動態的信道分配,允許將每個通道進行封閉或者打開來實現系統性的節能。

PCIe 6.0的關鍵

熟悉PCIe的讀者應該知道,所有的PCIe外設要想連接到系統上,關鍵就在于其控制器。因為多個標準的出現,市場對PCIe 控制器又提出了更多的需求。以PCIe 6.0 控制器為例,不但要要支持 PHY Interface for PCI Express (PIPE) 規范的 6.x 版,還要向后兼容 PCIe 5.0、4.0 和 3.1/3.0 規范。并且能夠滿足眾多客戶和行業用例,例如可配置為支持端點、根端口交換機端口和雙模拓撲,以幫助實現多種使用模型。

因為終端對速度的需求量猛增,市場對PCIe 6.0也翹首以待,作為這個市場的重要玩家之一,Rambus也推出他們全新的PCIe 6.0 控制器。

Matt Jones告訴記者,Rambus的PCIe 6.0控制器不但數據傳輸速率能達到新標準設定64GT/s。更重要的一點是,該控制器還集成了完整性和數據加密(IDE)引擎,使其可以實現數據在不同PCIe設備的PCIe通路之間的安全傳輸。同時,該控制器在功耗、面積以及延遲上都特別進行了相應的優化,特別在降低能耗方面,以幫助確保PCIe 6.0成為數據中心解決方案的一塊關鍵基石,進而推動環保型數據中心的建設,并減少對散熱管理的需求,降低擁有成本。

此外,Rambus的PCIe 6.0控制器還非常靈活,可以適用于PCIe端點、根端口、雙模式和交換機端口配置。

d277ae8a-bbf5-11ec-aa7f-dac502259ad0.jpg

Rambus總結道,公司PCIe 6.0控制器的主要特性包括但不限于:支持PCIe 6.0規范,包括64 GT/s數據傳輸速率和PAM4信令;支持實現高帶寬效率的固定大小的FLIT;實現低延遲前向糾錯 (FEC) 以提高鏈路穩健性;內部數據路徑大小可根據最大值自動放大或縮小(256、512、1024 位)鏈接速度和寬度,以減少門數和優化吞吐量;向后兼容PCIe 5.0、4.0和3.0/3.1;支持端點、根端口,以及雙模式和交換機端口配置以及針對性能進行了優化的集成IDE。

Matt Jones指出,PCIe 6.0早期的使用場景是高性能計算的應用(如AI加速器),這些計算密集型應用通常選擇的節點是高級節點,尤其集中在5納米和3納米。但是,隨著PCIe 6.0在未來的成熟,進入到其他的應用領域,可能更多使用者會考慮成本因素,并轉向不那么先進的節點。

Matt Jones同時強調,Rambus的PCIe 6.0的控制器將成為ASIC供應商的重要基石,幫助他們為AI/ML加速器建立起一個更加完善的PCI生態系統,并支持不斷發展的數據中心中PCIe 6.0級數據傳輸的基礎設施。

除了PCIe以外,Rambus還在備受關注的CXL(Compute Express Link)標準上扮演先鋒者的角色。這是一種開放式互連新標準,面向 CPU 和專用加速器的密集型工作負載,這些負載都需要在主機和設備之間實現高效穩定的存儲器訪問。

Rambus 大中華區總經理蘇雷透露,在去年,Rambus發布CXL內存互連計劃,推出了一系列面向數據中心的新的解決方案,目標是讓數據中心架構進入下一個更高效節能的新階段。他進一步指出,現在已經有廠商在CXL的合作上與Rambus進行了溝通。展望未來,CXL也會推出池化的概念,這將幫助下一代的數據中心變得更加高效化、節能化,以一種新的架構來迎合數據中心的未來需求。

之所以Rambus能夠在總線技術上擁有那么如此實力,如蘇雷所說,這從公司的名稱上可以體現的淋漓盡致。他表示,Rambus可以拆分為RAM和BUS,其中RAM代表內存,BUS是總線,這也代表了公司的兩個發力方向。在歷經多年的發展,Rambus也已經積累了3000多項專利和應用,公司的主要業務也涵蓋了基礎專利授權、芯片IP(接口IP和安全IP)授權以及內存接口芯片。

正因為擁有如此豐富的技術根基,這讓他們能夠為全球客戶提供全方位服務。具體到中國方面,蘇雷表示,Rambus會緊密聯系中國產業鏈上下游伙伴,除了提供優異性能的產品外,還提供緊密高效的技術支持。“我們將自身的技術經驗分享給客戶,以在設計階段就給客戶一些建議和指導,幫助客戶的產品以高質量更快上市。這也深得客戶的支持和歡迎,并且讓他們的產品更有競爭力。”蘇雷最后說。

審核編輯 :李倩

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • cpu
    cpu
    +關注

    關注

    68

    文章

    10870

    瀏覽量

    211901
  • PCIe
    +關注

    關注

    15

    文章

    1239

    瀏覽量

    82698

原文標題:關于PCIe 6.0,你需要知道的!

文章出處:【微信號:Rocker-IC,微信公眾號:路科驗證】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    Modbus和RS-485的組合使用,需要知道這些!

    在工業現場,Modbus設備與RS485的搭配無疑成為了自動化和通信領域的黃金搭檔,兩者相輔相成,成為業界公認的經典組合。這一“黃金組合”不僅廣泛普及,而且相互強化,共同構筑了一個可靠、穩定且經濟實惠的通信解決方案,為工業自動化帶來了顯著的便利和可靠性。 RS485(Recommended Standard 485) RS485是一種差分信號傳輸標準,用于在多點網絡中實現數據通信。它支持多主多從的通信模式,最多可以連接128個節點(可以使用中繼器擴展到更多節點)。
    的頭像 發表于 12-24 17:11 ?225次閱讀
    Modbus和RS-485的組合使用,<b class='flag-5'>你</b><b class='flag-5'>需要知道</b>這些!

    PCIe的最新發展趨勢

    1. PCIe 5.0和6.0的推出 PCIe 5.0和6.0是最新的PCIe標準,它們提供了更高的數據傳輸速率。
    的頭像 發表于 11-06 09:35 ?687次閱讀

    擴散模型的理論基礎

    擴散模型的迅速崛起是過去幾年機器學習領域最大的發展之一。在這本簡單易懂的指南中,學習需要知道關于擴散模型的一切。
    的頭像 發表于 10-28 09:30 ?432次閱讀
    擴散模型的理論基礎

    貼片電容型號除了要知道參數規格外還有哪些要知道

    在選擇貼片電容型號時,除了要知道其參數規格(如尺寸、容量、電壓、精度等)外,還需要考慮以下幾個方面。
    的頭像 發表于 09-21 14:58 ?300次閱讀

    搭建光學相干斷層掃描(OCT)系統您需要知道

    搭建光學相干斷層掃描(OCT)系統您需要知道!光學相干斷層掃描(OCT)系統的搭建需要光學和機械、信號和圖像處理等背景知識、一定的編程能力、以及大量的時間投入。使用現成的OCT光譜儀作為起始組件可以
    的頭像 發表于 07-18 08:16 ?600次閱讀
    搭建光學相干斷層掃描(OCT)系統您<b class='flag-5'>需要知道</b>

    關于定位系統技術知道多少?

    定位系統在如今這個沒有隱私的社會,已不是稀奇的技術。 不管是在大街上走還是在商場里逛, 只要想知道的行蹤就被定位系統鎖定了。就像我們看的西部大片,罪犯在這邊打電話,FBI在那邊定位,唧唧幾聲
    的頭像 發表于 07-12 11:16 ?337次閱讀
    <b class='flag-5'>關于</b>定位系統技術<b class='flag-5'>你</b><b class='flag-5'>知道</b>多少?

    如何簡化PCIe 6.0交換機的設計

    由于全球數據流量呈指數級增長,PCIe 6.0 交換機的市場需求也出現了激增。PCIe 6.0 交換機在高性能計算(HPC)系統(尤其是數據中心)中為
    的頭像 發表于 07-05 09:45 ?568次閱讀
    如何簡化<b class='flag-5'>PCIe</b> <b class='flag-5'>6.0</b>交換機的設計

    FPGA的PCIE接口應用需要注意哪些問題

    FPGA上的PCIe接口應用是一個復雜的任務,需要考慮多個方面的問題以確保系統的穩定性和性能。以下是在FPGA的PCIe接口應用中需要注意的關鍵問題: 硬件資源和內部架構 : FPGA
    發表于 05-27 16:17

    關于MOS管,需要知道的那些事

    MOT03/252024什么是MOS管?MOS,是MOSFET的縮寫。MOSFET金屬-氧化物半導體場效應晶體管,簡稱金氧半場效晶體管(Metal-Oxide-SemiconductorField-EffectTransistor,MOSFET)。一般是金屬(metal)—氧化物(oxide)—半導體(semiconductor)場效應晶體管,或者稱是金屬—
    的頭像 發表于 05-15 08:37 ?1703次閱讀
    <b class='flag-5'>關于</b>MOS管,<b class='flag-5'>你</b><b class='flag-5'>需要知道</b>的那些事

    PCIe 7.0規范何時最終確定?

    PCIe 7.0 規范的目標是將 PCIe 6.0 規范(64 GT/s)的數據速率提高一倍,達到 128 GT/s。
    的頭像 發表于 04-08 09:34 ?884次閱讀

    pcb設計的基本原則分享 PCB設計16個原則一定要知道

    PCB設計的這16個原則一定要知道
    的頭像 發表于 03-12 11:19 ?2895次閱讀

    下一代PCIe5.0 /6.0技術熱潮趨勢與測試挑戰

    迫切。 一、PCIe 5.0 /6.0技術升級 1)信號速率方面 從PCIe 3.0、4.0、5.0 到 6.0,數據速率翻倍遞增,6.0
    的頭像 發表于 03-06 10:35 ?1060次閱讀
    下一代<b class='flag-5'>PCIe</b>5.0 /<b class='flag-5'>6.0</b>技術熱潮趨勢與測試挑戰

    PCIe可以添加哪些定位手段?PCIe需要的debug設計

    如圖所示,PCIe IP作為endpoint與RC對接,用戶實現了應用邏輯,與PCIe IP進行交互,交互信號中data格式為TLP報文格式,且交互信號包含相應的控制信號,例如PCIe配置空間和IP相干的配置信號。
    的頭像 發表于 02-26 18:19 ?1365次閱讀

    PCIe 6.0元年,AI與HPC迎來新速度

    電子發燒友網報道(文/周凱揚)2022年1月,PCI-SIG發布了PCIe 6.0規范,正式拉開了接口帶寬大幅升級的序幕。然而,在規范公布的兩年時間里,也已經更新了6.0.1和6.1版本,PCIe
    的頭像 發表于 01-31 09:02 ?2817次閱讀

    GD32如何設計晶振電路

    關于晶振電路真的簡單嗎?如何可靠的設計好GD32晶振電路,我們需要知道這些:
    的頭像 發表于 01-16 09:37 ?1983次閱讀
    GD32如何設計晶振電路
    主站蜘蛛池模板: 成人欧美网站| 亚洲成综合人影院在院播放| 久久精品影院永久网址| 久久精品免视看国产成人2021| 深夜视频在线观看免费| 日日日干干干| 国产美女一级片| 婷婷色香五月激情综合2020| 国产农村乱色xxxx| 午夜湿影院| 在线看你懂| 天堂视频在线观看| 手机看片日韩在线| 久久久噜噜噜久久| 激情玖玖| 91在线电影| 天天爱天天插| 国产精品夜夜春夜夜爽| h网址在线观看| 国产精品久久自在自2021| 一道精品视频一区二区三区男同| 国产视频分类| 丁香五月欧美成人| 男人的午夜影院| 网友自拍区一区二区三区| 最好免费高清视频观看韩国| 一个综合色| 日本三级s级在线播放| 四虎hu| 五月婷婷六月丁香| 日韩理论电影2021第1页| 九色综合伊人久久富二代| 999毛片| 狠狠的干狠狠的操| 亚洲一区二区三区在线网站 | 男女爱爱爽爽福利免费视频| 国产免费色视频| 视频高清正版在线观看| 欧美com| 亚洲狠狠综合久久| 女人夜夜春|