在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

VE-Trac IGBT和碳化硅(SiC)模塊如何延長電動車續航能力

安森美 ? 來源:安森美 ? 作者:Jonathan Liao ? 2022-08-31 09:41 ? 次閱讀

作者:安森美高級產品線經理Jonathan Liao

因續航能力有限而導致的“里程焦慮”是許多消費者采用電動車的一個障礙。增加電池密度和提高能量轉換過程的效率是延長車輛續航能力以緩解這種焦慮的關鍵。能效至關重要的一個關鍵領域是主驅逆變器,它將直流電池電壓轉換為所需的交流驅動,以為電機供電。

在這篇技術文章中,我們討論VE-Trac IGBT和碳化硅(SiC)模塊如何賦能更高的電池密度并提供更高效的轉換過程,以延長電動車的續航能力,從而幫助克服消費者的擔憂。

主驅逆變器是電動車的核心,連接電池和主驅電機。它們將直流電池電壓轉換為電機所需的交流驅動,功率水平通常為80千瓦至150多千瓦。電池電壓基于電池組的大小,通常在400 V直流電壓范圍內,但800 V直流電壓正越來越普遍,以顯著減小電流,從而降低損耗。

雖然鋰離子(Li-Ion)電池成本在過去三年中降低了40%,或在過去十年中降低了90%,但它仍是電動車中最高的成本項。降價的軌跡預計將持續到2025年左右,屆時價格將趨于穩定。鑒于這項成本,當務之急是盡可能有效地利用每一焦耳的存儲能量,以減小電池組的成本和尺寸。

這種電力驅動提供極高的扭矩和加速度。逆變器和電動馬達組合的反應能力直接關系到車輛的“感知”,因而也關系到消費者的駕駛體驗和滿意度。

開關器件的作用

主驅逆變器通常含三個半橋元件,每個半橋元件由一對MOSFET或IGBT組成,稱為上橋和下橋開關。每個電機相位都有一個半橋,總共有三個,由柵極驅動器控制每個開關器件。

56e0d44c-2854-11ed-ba43-dac502259ad0.png

圖1:主驅逆變器概覽

開關的主要作用是打開和關斷來自高壓電池的直流電壓和電流,為推動車輛的電機提供交流驅動。這是個要求很高的應用,因為它工作在高電壓、高電流和高工作溫度條件,而800 V電池可提供超過200千瓦的功率。

基于400V電池系統的主驅逆變器要求功率半導體器件的VDS額定值在650V至750V之間,而800V方案將VDS額定值要求提高到1200 V。在一個典型的應用中,這些功率器件還必須處理持續時間長達30秒(s)的超過600 A的峰值交流電流,以及持續約1毫秒(ms)的最大交流電流1600 A。

此外,開關晶體管和用于該器件的柵極驅動器必須能夠處理這些大的負載,同時使主驅逆變器保持高能效。

IGBT一直是主驅逆變器應用的首選器件,因為它們可以處理高電壓,快速開關,帶來高能效的工作,并滿足汽車行業具挑戰性的成本目標。

開關和功率密度

現代汽車極為擁擠——至少含技術的空間是如此。這說明功率密度是個重要參數,動力總成的功率密度尤為重要。物理尺寸(和重量)必須最小化,因為任何重量都會導致車輛續航能力降低。

除了元器件的物理尺寸外,設計的能效也是主要的驅動因素。能效越高,產生的熱量就越少,逆變器的結構就越緊湊。

開關(無論是IGBT還是MOSFET)對產生熱量的損耗有最重要的影響。較低的導通電阻(RDS(ON))值可減少靜態損耗,而柵極電荷(Qg)的改進可減少動態或開關損耗,使系統的開關速度加快。如果開關速度更快,那么就可以大大減小磁鐵等無源元件的尺寸,從而提高功率密度。

開關的最高工作溫度也會影響功率密度,因為如果器件能在更高的溫度下工作,需要的冷卻就更少,從而進一步減少設計的尺寸和重量。

模塊化方案增加功率密度

在許多主驅逆變器的設計中,關鍵器件通常是單獨的分立封裝,雖然這是個非常有效的方法,但它不一定能提供最緊湊或最高功率密度的設計。

另一種方法是使用預配置的模塊來構成主驅逆變器所需的半橋。安森美(onsemi)的VE-Trac功率集成模塊(PIM)就是這樣一種方案,它專用于汽車功能電子化應用,包括逆變器。

VE-Trac Dual電源模塊在一個半橋架構中集成了一對1200 V超場截止(UFS)IGBT。這些器件采用了穩定可靠且經過驗證的溝槽(Trench) UFS IGBT技術,提供高電流密度、穩定可靠的短路保護以及800 V電池應用所需的更高阻斷電壓。該智能IGBT集成了電流和溫度傳感器,使其具有獨特的優勢,并對過電流(OCP)和過溫度等保護功能提供更快的反應時間,從而提供一個更穩定可靠的方案。

這些芯片被封裝好,安裝在具有4.2 kV(基本)絕緣能力的Al2O3覆銅基板(DBC substrate),兩側都有銅和冷卻性能。沒有線邦定的模塊比含有線邦定的類似外殼模塊預期壽命增加一倍。將該IGBT和一個二極管共同封裝,可以減少功率損耗和實現軟開關,從而提高整體能效。

VE-Trac Dual模塊將裸芯片封裝在一個小巧的尺寸中,更易于集成到緊湊的設計中。高效的工作、低損耗和雙面水冷確保輕松實現熱管理,同時持續工作在175°C允許向牽引電機提供更高的峰值功率。

主驅逆變器的每一相通常需要一個VE-Trac Dual模塊,其機械設計本身可用于多相應用,提供簡單的可擴展性,包括將模塊并聯以在每個單相提供更多的功率。

雖然基于IGBT的VE-Trac模塊足以滿足大多數汽車應用的要求,但基于SiC MOSFET的增強版也可用于最高要求的應用。這款產品采用了最新的寬禁帶(WBG)技術,進一步減小主驅逆變器設計的尺寸并提高能效。

總結

讓電動車在兩次充電之間行駛得更遠是我們當前的一大技術挑戰。由于政府要求,且人們期望改善環境,這些車輛將在未來幾年內被迅速采用。

如果減輕消費者的“續航里程焦慮”,電動車會更有吸引力,那么采用的速度會更快。實現這的最佳途徑是提高能效,這不僅延長續航里程,還增加功率密度和提升可靠性。

半導體開關是實現高能效的關鍵,雖然分立器件具有出色的性能,但最好的方案是專為汽車應用而設計的PIM,如安森美的VE-Trac模塊。這些基于IGBT的設計提供所需的高能效、高性能和可擴展性,外形小巧,簡化了熱設計。

審核編輯:湯梓紅

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 電動汽車
    +關注

    關注

    156

    文章

    12143

    瀏覽量

    231802
  • MOSFET
    +關注

    關注

    147

    文章

    7208

    瀏覽量

    213766
  • 逆變器
    +關注

    關注

    286

    文章

    4738

    瀏覽量

    207280
  • IGBT
    +關注

    關注

    1267

    文章

    3813

    瀏覽量

    249451
  • SiC
    SiC
    +關注

    關注

    29

    文章

    2850

    瀏覽量

    62763

原文標題:打破電動汽車“里程焦慮”,主驅能效如何升級?

文章出處:【微信號:onsemi-china,微信公眾號:安森美】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    SIC碳化硅二極管

    SIC碳化硅二極管
    發表于 11-04 15:50

    碳化硅深層的特性

    。超硬度的材料包括:金剛石、立方氮化硼,碳化硼、碳化硅、氮化硅碳化鈦等。3)高強度。在常溫和高溫下,碳化硅的機械強度都很高。25℃下,
    發表于 07-04 04:20

    電動汽車的全新碳化硅功率模塊

    面向電動汽車的全新碳化硅功率模塊 碳化硅電動汽車應用中代表著更高的效率、更高的功率密度和更優的性能,特別是在800 V 電池系統和大電池容
    發表于 03-27 19:40

    什么是碳化硅SiC)?它有哪些用途?

    什么是碳化硅SiC)?它有哪些用途?碳化硅SiC)的結構是如何構成的?
    發表于 06-18 08:32

    傳統的硅組件、碳化硅(Sic)和氮化鎵(GaN)

    系統能做得越小巧,則電動車的電池續航力越高。這是電動車廠商之所以對碳化硅解決方案趨之若鶩的主要原因。相較于碳化硅在大功率電力電子設備上攻城略
    發表于 09-23 15:02

    功率模塊中的完整碳化硅性能怎么樣?

    0.5Ω,內部柵極電阻為0.5Ω?! 」β?b class='flag-5'>模塊的整體熱性能也很重要。碳化硅芯片的功率密度高于硅器件。與具有相同標稱電流的硅IGBT相比,SiC MOSFET通常表現出顯著較低的開關損耗
    發表于 02-20 16:29

    碳化硅SiC技術導入應用的最大痛點

    ,熱導率是硅的10倍。  SiC在所有重要方面都優于硅  這為碳化硅器件開辟了廣泛的應用領域,在5G/數據中心等空間受限和節能領域,低損耗是應用的推動力;在電動汽車領域,更高的牽引逆變器效率意味著更小
    發表于 02-27 14:28

    淺談硅IGBT碳化硅MOSFET驅動的區別

    10μs,在設計硅IGBT的短路保護電路時,建議將短路保護的檢測延時和相應時間設置在5-8μs較為合適。  2)碳化硅MOSFET  一般碳化硅MOSFET模塊短路承受
    發表于 02-27 16:03

    通俗易懂的術語: VE-Trac Direct和VE-Trac Dual的功能

    功率模塊VE-Trac Direct和VE-Trac Dual是在電動汽車(EV)或混合電動汽車(HEV)中轉換直流(DC)電池電源的器件。
    的頭像 發表于 06-02 16:17 ?2537次閱讀

    安森美推出VE-Trac系列的功率集成模塊(PIM)

    (onsemi)推出了 VE-Trac系列的功率集成模塊(PIM),提供可擴展性、增強的熱性能、以及行業最低電感的封裝結構,能實現最高能效、最先進的功率密度和敏捷的響應速度。目前,VE-Trac系列包括
    的頭像 發表于 06-06 16:29 ?2384次閱讀

    VE-Trac SiC如何讓主驅逆變器變得更強

    雙碳目標正加速推進汽車向電動化發展,半導體技術的創新助力汽車從燃油車過渡到電動車,新一代半導體材料碳化硅(SiC)因獨特優勢將改變電動車的未
    的頭像 發表于 09-20 15:20 ?1347次閱讀
    <b class='flag-5'>VE-Trac</b> <b class='flag-5'>SiC</b>如何讓主驅逆變器變得更強

    VE-Trac Dual? 組裝指南

    VE-Trac Dual? 組裝指南
    發表于 11-14 21:08 ?0次下載
    <b class='flag-5'>VE-Trac</b> Dual? 組裝指南

    VE-Trac 直接技術指南

    VE-Trac 直接技術指南
    發表于 11-15 20:16 ?0次下載
    <b class='flag-5'>VE-Trac</b> 直接技術指南

    用于電動車充電的的碳化硅(SiC)MOSFET 2-PACK模塊

    2021年6月8日—推動高能效創新的安森美半導體 (ON Semiconductor,美國納斯達克上市代號:ON),發布一對1200 V完整的碳化硅 (SiC) MOSFET 2-PACK模塊
    發表于 02-20 15:45 ?1次下載
    用于<b class='flag-5'>電動車</b>充電的的<b class='flag-5'>碳化硅</b>(<b class='flag-5'>SiC</b>)MOSFET 2-PACK<b class='flag-5'>模塊</b>

    碳化硅SiC電動車中的應用

    碳化硅SiC)在電動車中的應用主要集中在電力電子系統方面,以下是對其在電動車中具體應用的分析: 一、電動車充電設備 在
    的頭像 發表于 11-25 17:32 ?551次閱讀
    主站蜘蛛池模板: 女人被狂躁视频免费网站| 欧美精品一区视频| 高h细节肉爽文bl1v1| 狠狠色噜噜狠狠狠狠97不卡| 色激情网| 五月天精品在线| 夜夜爱夜夜爽夜夜做夜夜欢| 四虎国产精品永久在线播放 | 婷婷综合久久狠狠色99h| 亚州色吧| 一级@片| 亚欧成人乱码一区二区| 色综合久久天天综合绕观看| 欧美三级黄视频| 国产网站免费看| 天天综合网天天综合色不卡| 有没有免费的视频在线观看| 午夜精品久久久久久99热| 91成人在线播放| 天天黄色| 天天视频黄| 六月丁香综合网| 免费性bbbb台湾| 日本高清视频一区| 春宵福利网站| 亚洲日本视频| 亚洲国产情侣偷自在线二页| 欧洲无线区一二区| 欧美成人69| 成人欧美一区二区三区的电影| 狠狠色丁香久久婷婷综| 99免费观看视频| 精品国产理论在线观看不卡| 插久久| 男人午夜视频| 尤物啪啪| 香蕉视频网站在线播放| 性欧美高清视频| 美女免费黄| 天天干夜夜噜| 亚洲精品资源|