近日,西北工業(yè)大學材料學院凝固技術國家重點實驗室先進凝固理論團隊及材料基因組國際合作研究中心牛海洋教授與瑞士蘇黎世聯邦理工學院Michele Parrinello教授團隊合作在金屬鎵的凝固形核機理研究方面取得了新進展,研究成果“金屬鎵的第一性原理相圖及凝固形核研究”(Ab initio phase diagram and nucleation of gallium)近日在Nature Communications在線發(fā)表,牛海洋教授和Michele Parrinello教授為共同通訊作者,牛海洋教授為論文的第一作者。
金屬鎵是一種具有重要工業(yè)應用價值的材料,廣泛用于半導體、太陽能電池、低熔合金的制造。常壓條件下其熱力學穩(wěn)定相α-Ga的熔點只有29.8℃,且其同時具有分子性和金屬性。與冰類似,α-Ga的密度低于液態(tài)鎵的密度。液態(tài)鎵,尤其是在體積受限條件下,具有極大的過冷度,例如微米尺度的液態(tài)鎵可過冷至150K的低溫。在此種場景下,液態(tài)鎵凝固結晶得到的是以亞穩(wěn)相β-Ga為主的混合相而不是α-Ga。如何從形核機理上破解金屬鎵的深過冷特性以及其凝固過程中α相和β相的競爭之謎已成為困擾該領域內研究人員的科學難題。
從原子尺度出發(fā)深入研究形核過程是破解上述難題的關鍵,然而受限于空間和時間分辨率,目前的實驗手段仍難以直接觀察材料凝固中晶核的形成過程。隨著計算材料科學的不斷發(fā)展,原子尺度下的計算機模擬,例如分子動力學作為研究復雜凝聚態(tài)系統(tǒng)的有力工具,已廣泛應用于材料凝固過程的模擬并取得了一系列重大進展。
牛海洋教授與Michele Parrinello教授合作在先進分子動力學方法開發(fā)及其在材料凝固研究上的應用方面做出了一系列重要工作(PNAS,2018, 115,5348; JPCL, 2018, 9, 6426;PRL, 2019, 122, 245501)。然而對金屬鎵的凝固形核過程進行分子動力學計算模擬研究依然需要克服兩大困難:其一,液態(tài)鎵的深過冷特性造成其形核所需的時間遠遠超過了分子動力學模擬能夠達到的時間尺度;其二,受限于金屬鎵奇異復雜的結構及物理性質,描述金屬鎵的準確勢函數目前依然空缺。
針對上述問題,團隊基于材料基因工程的理念,提出將先進分子動力學方法與深度學習方法相結合的研究思路,構建出達到第一性原理精度的金屬鎵勢函數,同時對金屬鎵的凝固形核過程進行了系統(tǒng)的研究。材料的凝固過程不僅涉及到材料的液固兩態(tài),而且還有最核心的中間過渡態(tài),即液-固界面態(tài)。研究團隊通過采集先進分子動力學方法模擬金屬鎵的凝固過程中的有效結構信息作為訓練集,之后采用第一性原理計算訓練集的相關性質,最終通過深度學習算法構建得到計算精度達到第一性原理級別能同時描述金屬鎵的液態(tài)和三種固態(tài)結構(α-Ga、β-Ga和Ga-II)的勢函數。
采用這一勢函數,研究人員確定了包含上述四種結構態(tài)的金屬鎵的溫度-壓力相圖。同時在研究金屬鎵的凝固機制時發(fā)現當溫度高于174 K時,β相的形核能壘更低,成功解釋了過冷液態(tài)金屬鎵容易形成亞穩(wěn)態(tài)β相而不是穩(wěn)態(tài)α相的實驗難題。此外,研究人員將先進分子動力學方法與基于種子技術的分子動力學方法相結合,系統(tǒng)研究了金屬鎵α相和β相的凝固形核過程并計算了兩者的凝固速率。在150 K以上,兩相的凝固形核勢壘極大且凝固速率極低,與金屬鎵的深過冷特性相吻合。
上述研究工作不僅推動了人們對金屬鎵凝固形核機理的深入認識,從理論上破解了金屬鎵的深過冷特性以及其α相和β相在凝固過程中的競爭規(guī)律,并為構建復雜體系的高精度勢函數及研究它們的溫度-壓力相圖及凝固形核機理提供了系統(tǒng)性的研究方法。
圖1 原子尺度下金屬鎵α相和β相的凝固形核過程
圖2 金屬鎵的溫度-壓力相圖
圖3 不同溫度下金屬鎵α相和β相的凝固臨界晶核及形核勢壘曲線圖
-
函數
+關注
關注
3文章
4341瀏覽量
62800 -
動力學
+關注
關注
0文章
105瀏覽量
16994 -
深度學習
+關注
關注
73文章
5510瀏覽量
121337
原文標題:文章轉載丨西工大牛海洋教授Nature子刊:破解金屬鎵凝固形核機理難題!
文章出處:【微信號:hzwtech,微信公眾號:鴻之微】歡迎添加關注!文章轉載請注明出處。
發(fā)布評論請先 登錄
相關推薦
評論