按照ISO 15243—2017《滾動(dòng)軸承 損傷與破壞 術(shù)語、特點(diǎn)和原因》和GB/T 24611—2020《滾動(dòng)軸承 損傷和失效 術(shù)語、特征及原因》的內(nèi)容,軸承失效類型分為滾動(dòng)接觸疲勞、磨損、腐蝕、電蝕、塑性變形、開裂和斷裂共計(jì)六大類。電蝕是由損傷電流通過軸承造成接觸表面的局部顯微組織變化及材料的移失。這種材料移失外觀表現(xiàn)為凹坑或凹槽。軸承電蝕破壞了軸承局部結(jié)構(gòu)和潤滑油膜,軸承運(yùn)行的宏觀表現(xiàn)是噪聲增大和溫度升高,輕則導(dǎo)致軸承壽命嚴(yán)重縮短,重則導(dǎo)致電機(jī)失控,對汽車驅(qū)動(dòng)電機(jī)的可靠性、耐久性、安全性構(gòu)成嚴(yán)峻挑戰(zhàn),必須解決這一技術(shù)難題。
1 失效機(jī)理
根據(jù)失效機(jī)理不同,將軸承電蝕分為電壓過高電蝕和電流泄露電蝕兩類。
1.1 電壓過高電蝕
軸承內(nèi)圈、外圈、滾動(dòng)體都是軸承鋼制成,為良好導(dǎo)體。填充的潤滑油脂通常為絕緣介質(zhì)。因此,軸承內(nèi)圈和滾動(dòng)體之間、軸承外圈和滾動(dòng)體之間各自構(gòu)成一個(gè)電容,稱為接觸點(diǎn)電容。當(dāng)軸承內(nèi)外套圈和滾動(dòng)體之間的電壓超過絕緣擊穿閾值時(shí),就會(huì)擊穿電容產(chǎn)生瞬時(shí)大電流,電流通過滾動(dòng)體和潤滑油膜從軸承的一個(gè)套圈傳遞到另一個(gè)套圈,在套圈和滾動(dòng)體之間的接觸區(qū)發(fā)生集中火花放電,局部火花溫度很高,造成在非常短的時(shí)間間隔內(nèi)局部受熱,使得接觸區(qū)發(fā)生熔化并焊合在一起。這種損傷表現(xiàn)為一系列直徑為百微米級(jí)別的環(huán)形凹坑,當(dāng)滾動(dòng)體滾過時(shí),就會(huì)在凹坑邊緣產(chǎn)生應(yīng)力集中。局部高溫和應(yīng)力集中的綜合作用,使得油脂碳化和凹坑附近軸承鋼剝落,軸承進(jìn)一步發(fā)生次生失效。
1.2 電流泄漏電蝕
當(dāng)一損傷電流(電容性或電感性)連續(xù)形成時(shí),表面損傷最初呈現(xiàn)淺環(huán)形坑狀,一環(huán)形坑與另一環(huán)形坑位置接近并且尺寸很小(微米級(jí)),即使電流強(qiáng)度很小也會(huì)發(fā)生這種現(xiàn)象。電流通過整個(gè)接觸橢圓(球軸承)和接觸線(滾子軸承),隨著軸承旋轉(zhuǎn),凹坑將逐步發(fā)展為波紋狀凹槽。由于電機(jī)旋轉(zhuǎn)呈現(xiàn)一定頻率的脈振,這種波紋狀凹槽近似間距相等,也稱為“搓衣板紋”。深溝球軸承的滾動(dòng)體存在自轉(zhuǎn)和公轉(zhuǎn),在滾動(dòng)體上凹坑無法規(guī)律性聚集,沒有特征分布,所以只能在滾子和套圈滾道接觸表面發(fā)現(xiàn)這些波紋狀凹槽,滾動(dòng)體上則沒有,只是顏色變暗發(fā)灰。對于圓柱滾子軸承,則表現(xiàn)為柱狀滾動(dòng)體上的波紋狀凹槽。類似電壓過高電蝕,電流泄露電蝕也會(huì)劣化潤滑劑,劣化的潤滑劑顏色發(fā)黑變硬。
2 失效原因
傳統(tǒng)三相電源供電的電機(jī),其軸承電流主要由電機(jī)磁路不平衡和不對稱引起,環(huán)繞軸的凈磁通量產(chǎn)生軸承電流。
而現(xiàn)代PWM變頻供電的電壓源逆變器輸出只有高低電平兩種狀態(tài),只有兩個(gè)輸出狀態(tài)時(shí),不可能產(chǎn)生完全對稱的三相波形,因此會(huì)發(fā)生不平衡(三相電壓和不為零)。其結(jié)果是繞組中性點(diǎn)在正負(fù)直流母線電平之間跳變,在電機(jī)繞組和殼體地之間產(chǎn)生非常大的共模電壓,同時(shí)電壓幅值變化率較高。這些因素通過多種路徑耦合導(dǎo)致新增多種形式的軸承電流,其因果效應(yīng)鏈如圖1所示。
圖1 變頻驅(qū)動(dòng)電機(jī)誘導(dǎo)的軸承電流
(1)容性軸承電流
容性軸承電流由共模電壓分壓導(dǎo)致的軸承電壓引起,相比其他軸承電流很小,對軸承無害。電機(jī)高頻等效電路如圖2所示。
圖2 電機(jī)高頻等效電路
圖2中,Cwf為高壓定子繞組與地電位定子鐵心之間的電容;Cwr在轉(zhuǎn)子表面與定子繞組之間,所有三相并聯(lián)的一個(gè)電容;Crf轉(zhuǎn)子表面與定子鐵心表面齒頂氣隙之間的電容;Cb為驅(qū)動(dòng)端和非驅(qū)動(dòng)端的軸承電容,中高速有完好的潤滑油膜時(shí),軸承是電容特性;υb為軸承電壓,定義為軸承內(nèi)外圈之間的電位差;υY為電機(jī)繞組中性點(diǎn)對地電壓,也是共模電壓(三相相電壓的算術(shù)平均值)。軸承電壓、軸承電流的計(jì)算公式如下:
(2)EDM靜電放電電流
共模源通過電容分壓器給軸承充電,當(dāng)超過門檻電壓時(shí)會(huì)導(dǎo)致一個(gè)放電電流脈沖。潤滑油膜在達(dá)到最大可能的軸承電壓前頻繁放電,此時(shí)軸承電壓不再由共模電壓決定。
(3)環(huán)流軸承電流
較高的相電壓變化率產(chǎn)生一個(gè)相當(dāng)大的高頻地電流,電流勵(lì)磁產(chǎn)生一個(gè)環(huán)形磁通,磁通誘導(dǎo)產(chǎn)生一個(gè)高頻轉(zhuǎn)軸電壓,進(jìn)而引起環(huán)流軸承電流。
(4)轉(zhuǎn)子地電流
很多應(yīng)用中,轉(zhuǎn)子可能通過一個(gè)低阻抗路經(jīng)連接到地電位(比定子殼體接地的阻抗低,比如通過驅(qū)動(dòng)負(fù)載),則總接地電流的一部分可能作為轉(zhuǎn)子地電流通過,隨著電機(jī)尺寸增加,轉(zhuǎn)子地電流可能達(dá)到相當(dāng)大的幅值。轉(zhuǎn)子地電流幾乎完全通過電機(jī)軸承-機(jī)械耦合器(如花鍵、聯(lián)軸器)-被驅(qū)動(dòng)負(fù)載(如減速器)的軸承,因此轉(zhuǎn)子地電流對軸承是特別有害的[1-4]。
3 預(yù)防控制
減小或消除軸電流引起的損傷,主要手段是限制軸電壓的升高和定向引導(dǎo)軸電流流通路徑,方法有多種,如圖3所示。
圖3 軸承電流抑制技術(shù)策略圖
3.1 法拉第屏蔽
通常在轉(zhuǎn)子和定子之間引入接地(高頻)銅箔屏蔽來實(shí)現(xiàn)法拉第屏蔽,小心安裝,以避免定子疊片短路。轉(zhuǎn)子和定子之間的導(dǎo)電屏蔽將通過電容屏障有效阻斷變頻驅(qū)動(dòng)電流感應(yīng)到轉(zhuǎn)軸上,以達(dá)到將定子和轉(zhuǎn)子之間的高頻寄生耦合降至最低的目的。該技術(shù)不能防止循環(huán)電流效應(yīng)或軸接地電流,且制造難以實(shí)現(xiàn),成本非常高,極少有采用[5-7]。
3.2 逆變器輸出波形優(yōu)化
由于某些技術(shù)原因,電驅(qū)動(dòng)系統(tǒng)中通常會(huì)設(shè)計(jì)使用扼流圈和濾波器,從簡單的濾波器到正弦輸出電壓濾波器等。這些措施主要設(shè)計(jì)目的是緩解因電機(jī)電纜過長而產(chǎn)生的電容性電纜充電電流、降低電機(jī)峰值電壓、盡量減小電機(jī)噪聲、減少EMC排放[7],同時(shí)也將在減小軸承電流方面產(chǎn)生有益的效果。
濾波對策與軸承電流抑制有效性的對應(yīng)關(guān)系如表1所示。
3.3 控制策略優(yōu)化
(1)優(yōu)化開關(guān)頻率
現(xiàn)代逆變器使用約2 kHz~20 kHz的開關(guān)頻率,大多數(shù)逆變器允許修改開關(guān)頻率。隨著開關(guān)頻率的增加,軸承電蝕破壞性事件的頻率也會(huì)增加。在許多情況下,開關(guān)頻率可以適當(dāng)降低,而不會(huì)影響整體性能,同時(shí)可減少EMC排放。
表1 濾波策略與軸承電流抑制對應(yīng)關(guān)系表
(2)優(yōu)化PWM調(diào)制算法
采用減少共模電壓輸出的PWM調(diào)制算法,能夠從源頭上降低共模電壓引起的軸承電流電蝕問題[8-9]。
3.4 絕緣轉(zhuǎn)軸
在轉(zhuǎn)軸精加工后,在轉(zhuǎn)軸的軸承檔噴鍍絕緣材料或者電機(jī)轉(zhuǎn)軸非軸伸端燒結(jié)一層陶瓷,以起到軸承與轉(zhuǎn)軸之間絕緣的作用[10]。
圖4 電絕緣軸承涂層示意圖
3.5 電絕緣軸承-絕緣涂層軸承
通常,高性能絕緣介質(zhì)的薄涂層(50 μm~300 μm)被等離子噴鍍到軸承的內(nèi)圈或外圈上,如圖4所示[7,11]。薄薄的絕緣鍍層相當(dāng)于在軸承和軸承室之間,或者軸承和軸之間添加了一個(gè)較大的電容(較小的容抗Xc=1/wc)。由于電容的“隔直通交”的作用,所以可以保護(hù)軸承避免直流電通過,解決靜電放電導(dǎo)致的軸承電流問題。但當(dāng)高頻交流電流存在時(shí),這種軸承電流無法消除,因?yàn)殡娙菸灰齐娏魅钥赡芡ㄟ^薄絕緣層。軸承絕緣的電容必須足夠小,才可以以將任何雜散電流的值降至最低。
3.6 電絕緣軸承-混合式軸承
絕緣軸承的另一個(gè)選擇是混合式軸承(也稱為陶瓷滾動(dòng)體軸承),如圖5所示。混合式軸承的內(nèi)外圈由軸承鋼制成[11],滾動(dòng)體由陶瓷制成。陶瓷滾動(dòng)體非常耐磨并且具有較好的電絕緣性能,這種軸承是非常昂貴的。此外,由于陶瓷軸承與鋼軸承的抗壓強(qiáng)度不同,在大多數(shù)情況下,陶瓷軸承必須調(diào)整尺寸,以處理機(jī)械靜態(tài)和動(dòng)態(tài)載荷。整個(gè)滾動(dòng)體為絕緣材料,因此軸承內(nèi)外圈之間的絕緣介質(zhì)間距很大,等效電容很小,容抗很大(Xc=1/wc),交流電流和直流電流都無法通過,因此從根本上解決軸承電蝕的問題[5]。
圖5 兩種電絕緣軸承
陶瓷滾動(dòng)體和鋼滾動(dòng)體具有不同的材料性能,對比如表2所示。
表2 陶瓷滾動(dòng)體與鋼混動(dòng)體材料性能對比表
需要注意的是,使用陶瓷滾動(dòng)體軸承防止軸電流通過軸承排出,與其他隔離措施一樣,軸承電流可能會(huì)通過與電機(jī)相連的負(fù)載尋找另一條接地路徑。
3.7 絕緣端蓋軸承室
軸承室的內(nèi)徑與軸承外徑配合,可在軸承室內(nèi)徑表面噴涂絕緣材料,也可將軸承室與軸承配合面間采用環(huán)氧樹脂絕緣漆調(diào)配后封塑,待其固化后根據(jù)配合要求進(jìn)行加工,還可對軸承室與端蓋的配合面采用環(huán)氧樹脂絕緣漆調(diào)配后封塑,待其固化后根據(jù)配合要求進(jìn)行加工。絕緣作用機(jī)理與絕緣軸承類似[10,12]。
3.8 導(dǎo)電軸承-導(dǎo)電潤滑脂
導(dǎo)電潤滑脂含有導(dǎo)電顆粒,提供連續(xù)的低阻抗放電路徑,從而防止軸承上的電位升高。導(dǎo)電潤滑脂在軸承靜態(tài)測試下表現(xiàn)出良好的導(dǎo)電性,但軸承運(yùn)轉(zhuǎn)時(shí)內(nèi)部接觸是動(dòng)態(tài)過程,滾動(dòng)體和滾道之間的接觸電阻很不穩(wěn)定,且潤滑油中添加的導(dǎo)電顆粒會(huì)增加軸承的機(jī)械磨損,可能導(dǎo)致軸承壽命受損。如果能夠克服這些限制,則高導(dǎo)電性潤滑脂是一個(gè)很好的解決方案。帶導(dǎo)電潤滑脂的高速電機(jī)軸承如圖6所示[7]。
圖6 帶導(dǎo)電潤滑脂的高速電機(jī)軸承
3.9 導(dǎo)電軸承-導(dǎo)電密封
舍弗勒采用導(dǎo)電聚四氟乙烯PTFE和導(dǎo)電橡膠材料制成軸承密封結(jié)構(gòu),達(dá)到類似導(dǎo)電潤滑脂填充的導(dǎo)電效果。帶導(dǎo)電密封的高速電機(jī)軸承如圖7所示。
圖7 帶導(dǎo)電密封的高速電機(jī)軸承
3.10 接地碳刷
碳刷也叫電刷,是一種滑動(dòng)接觸件。碳刷產(chǎn)品材質(zhì)主要有石墨、浸脂石墨、金屬(含銅、銀)石墨。碳刷一般制成方塊外形,卡在金屬支架上,里面有彈簧把它緊壓在轉(zhuǎn)軸上。碳刷是提供低阻抗接地路徑的更實(shí)用和經(jīng)濟(jì)的方法,但是問題很明顯:電機(jī)運(yùn)轉(zhuǎn)時(shí),碳刷與軸有機(jī)械接觸,容易磨損,需定期維護(hù),更換并清理積碳。高速運(yùn)行時(shí)產(chǎn)生高熱量,故碳刷不適合高速應(yīng)用。由于碳刷安裝彈簧的振動(dòng)和軸表面的氧化,其導(dǎo)電有效性可能在短時(shí)間內(nèi)顯著降低。碳刷摩擦產(chǎn)生的粉末如果進(jìn)入軸承會(huì)損傷軸承,因此要特別注意軸承保持清潔度及其密封設(shè)計(jì)[5]。
3.11 柔性纖維電刷
類似傳統(tǒng)的接地碳刷,柔性纖維電刷使用特殊設(shè)計(jì)的導(dǎo)電微纖維來重定向軸承電流,并提供從轉(zhuǎn)軸到殼體的可靠的、非常低阻抗的放電路徑,完全旁路電機(jī)軸承。ITW 公司旗下的 AEGIS 軸接地環(huán)原理圖如圖8所示。軸接地環(huán)(SGR)是較為著名的柔性纖維電刷產(chǎn)品,SGR是既有接觸式導(dǎo)流又有非接觸式放電的產(chǎn)品,將導(dǎo)電微纖維布置在電機(jī)軸周圍。SGR利用電離原理來提高電子轉(zhuǎn)移率。SGR擁有數(shù)十萬個(gè)放電點(diǎn),可引導(dǎo)電機(jī)軸承周圍的電流,并保護(hù)其免受電氣損壞。SGR是一種低成本的解決方案,可以應(yīng)用于幾乎任何變頻驅(qū)動(dòng)中幾乎任何尺寸的交流電機(jī)。
圖8 AEGIS 軸接地環(huán)原理示意圖[5、13-14]
這種微纖維電刷結(jié)構(gòu)與傳統(tǒng)的彈簧加載接觸碳刷相比具有許多優(yōu)點(diǎn)。
①可靠耐久性高
輕質(zhì)微纖維與轉(zhuǎn)軸之間的摩擦作用力很小,因此微纖維電刷的磨損率非常低,磨損壽命最長達(dá)20萬小時(shí),這種電刷安裝后在電機(jī)的使用壽命內(nèi)通常免維護(hù)。采用多排設(shè)計(jì)可提高可靠性。
②高速性能好
纖維在沒有彈簧壓力的情況下輕輕接觸軸,即使在高轉(zhuǎn)速下,纖維在運(yùn)行過程中產(chǎn)生的熱量也可以忽略不計(jì),沒有速度限制。
③放電能力強(qiáng)
微纖維的電流承受能力通常比傳統(tǒng)碳刷高得多,微纖維可以在滑動(dòng)表面上提供較大的實(shí)際接觸面積,360°圓周與轉(zhuǎn)軸多達(dá)數(shù)百萬個(gè)離散接觸點(diǎn),從而大大提高轉(zhuǎn)軸電壓放電的效率。
④環(huán)境適應(yīng)性好
采用獨(dú)特的接觸/非接觸設(shè)計(jì),即使沒有直接接觸,納米間隙技術(shù)也可確保有效電氣接觸。當(dāng)纖維在帶電表面上時(shí),超細(xì)纖維在纖維尖端產(chǎn)生電暈放電。電暈放電是通過空氣分子進(jìn)行的,即使轉(zhuǎn)軸上有油或油脂,放電也可以進(jìn)行,不受溫度、濕度或大氣的影響。
Sohre Turbomachinery提供了類似的鬃毛型纖維接地電刷;Inpro/Seal推出了Smart CDR(電流分流器環(huán))接地產(chǎn)品,采用創(chuàng)新的套管設(shè)計(jì),專有導(dǎo)電絲狀物提供低阻抗接地路徑,將雜散軸電流安全轉(zhuǎn)移至軸承。CDR集成了一個(gè)導(dǎo)電O形青銅套筒,為導(dǎo)電絲狀物提供一致的接觸面。青銅表面磨損顯著減少,并在所有環(huán)境中保持有效導(dǎo)電性。導(dǎo)電纖維絲和轉(zhuǎn)軸之間無直接接觸,避免氧化,無需定期維護(hù)。
需要注意的是,在電機(jī)出現(xiàn)高頻循環(huán)電流的情況下,單端接地電刷可能會(huì)惡化接地電刷對面另一端軸承位置處的軸承電流放電,因此有時(shí)需要使用2個(gè)接地電刷。
3.12 軸接地環(huán)
KACO發(fā)明了另一種用于電動(dòng)汽車電機(jī)和齒輪箱高技術(shù)要求的軸接地環(huán),通過具有特殊涂層的高導(dǎo)電性PTFE墊圈,將有害的軸電壓和軸承電流轉(zhuǎn)移到電氣接地,以防止軸承損壞和噪聲干擾。按使用環(huán)境有無介質(zhì)區(qū)隔,產(chǎn)品分為濕式運(yùn)行和干式運(yùn)行兩類,如圖9所示。
圖9 濕式、干式軸接地環(huán)
濕式軸接地環(huán)采用:特殊設(shè)計(jì),改善了在介質(zhì)影響下與軸的接觸;高達(dá)60 m/s的圓周速度;大于15 mm的軸直徑;靈活的裝配或安裝方式;雙向旋轉(zhuǎn)方向;標(biāo)準(zhǔn)的汽車溫度范圍。干式軸接地環(huán)有:高達(dá)60 m/s的圓周速度;大于35 mm的殼體直徑;靈活的裝配或安裝方式;雙向旋轉(zhuǎn)方向;標(biāo)準(zhǔn)的汽車溫度范圍。
3.13 電氣安裝技術(shù)
搭接和接地。在任何情況下,良好的安裝技術(shù)都是避免EMI潛在問題的關(guān)鍵。同樣的,良好的安裝技術(shù)可以降低軸承電流,其原理是確保屏蔽連接上的阻抗路徑盡可能低,以避免雜散電流通過軸承返回地面。逆變器、電機(jī)和負(fù)載之間應(yīng)采用地電位均衡技術(shù)。
例如,AEGIS高頻接地帶能確保電機(jī)機(jī)身與系統(tǒng)接地之間阻抗非常低的接地通道,以釋放變頻驅(qū)動(dòng)產(chǎn)生的高頻電流。AEGIS的HFGS 搭接帶[13](圖10)與 AEGIS的SGR防護(hù)環(huán)(將有害的變頻驅(qū)動(dòng)感應(yīng)電流從電機(jī)軸承旁路導(dǎo)入電機(jī)機(jī)身)結(jié)合使用,可在電機(jī)機(jī)身與系統(tǒng)地之間提供完美的保護(hù)通道。
圖10 HFGS 搭接帶[13]
綜上所述,每種單獨(dú)的解決方法都各有利弊,單獨(dú)依靠某一個(gè)方法來解決軸承電蝕問題都存在局限性。對于車用驅(qū)動(dòng)電機(jī),比較可靠有效的解決方案是采用“消減”、“疏通”、“阻堵”相結(jié)合的方法,綜合治理系統(tǒng)方案。同時(shí),必須特別小心傳感器等附件,避免無意中被用作犧牲保護(hù)元件,為軸電流提供通路。
4 熱點(diǎn)案例
4.1 特斯拉案例
2018年3月22日,特斯拉公布US201715827363專利[15]。該專利提出了通過接地電刷和導(dǎo)電軸承連接轉(zhuǎn)軸和殼體,以實(shí)現(xiàn)轉(zhuǎn)軸接地放電的技術(shù)構(gòu)思。實(shí)際產(chǎn)品中,特斯拉選擇導(dǎo)電軸承方案進(jìn)行放電。
“帶電體”轉(zhuǎn)軸是旋轉(zhuǎn)運(yùn)動(dòng)件,而“地件”殼體為靜止件,因此如何實(shí)現(xiàn)旋轉(zhuǎn)運(yùn)動(dòng)件-靜止件的轉(zhuǎn)接是重點(diǎn),軸承是實(shí)現(xiàn)轉(zhuǎn)接的理想零件。導(dǎo)電軸承與轉(zhuǎn)子主支撐軸承的區(qū)別在于外徑、結(jié)構(gòu)、成分、載荷不同,油脂層更薄,電阻更小,進(jìn)而可以分流泄放共模電壓。特斯拉驅(qū)動(dòng)電機(jī)軸電荷放電路徑:電機(jī)轉(zhuǎn)軸→導(dǎo)電片→導(dǎo)電油脂軸承→殼體。特斯拉導(dǎo)電軸承結(jié)構(gòu)簡單高效,如圖11所示。
圖11 特斯拉導(dǎo)電軸承示意圖[15]
和過高引起的電磁噪聲在路徑中傳播產(chǎn)生共模干擾是電驅(qū)動(dòng)系統(tǒng) EMI 問題的難點(diǎn)。在逆變器輸出三相線纜端添加濾波磁環(huán)可抑制EMI 發(fā)射水平,同時(shí)也會(huì)顯著降低共模電壓對軸承電流的影響。濾波磁環(huán)通常采用納米晶材料制作,納米晶具有高磁導(dǎo)率、高飽和磁通密度、損耗小、高居里溫度、高工作磁感等優(yōu)點(diǎn),特斯拉在三相高壓連接器中集成了納米晶磁環(huán),輔助抑制軸電流。如圖12所示,黑色部分為納米晶磁環(huán)。
4.2 華為案例
2021年4月23日,華為公布CN112701824A專利[16]。該專利解決電機(jī)軸承電蝕問題的核心思路為轉(zhuǎn)軸旁路導(dǎo)電接地。導(dǎo)電軸承內(nèi)圈穿設(shè)一導(dǎo)電柱,導(dǎo)電柱外側(cè)壁與導(dǎo)電軸承內(nèi)圈過盈配合,導(dǎo)電柱的另一端接地,導(dǎo)電軸承的外圈與軸孔的內(nèi)圈過盈配合。放電路徑:電機(jī)轉(zhuǎn)軸→新增軸承座→導(dǎo)電油脂軸承→導(dǎo)電柱→導(dǎo)電片→殼體。該方案與特斯拉類似,都通過空心轉(zhuǎn)軸內(nèi)嵌輔助導(dǎo)電油脂軸承進(jìn)行放電,不同之處在于導(dǎo)電接地的具體結(jié)構(gòu)形式。為了規(guī)避特斯拉專利,華為方案的結(jié)構(gòu)復(fù)雜,如圖13所示。
圖13 華為導(dǎo)電軸承結(jié)構(gòu)示意圖
5 結(jié) 語
本文依次從失效模式、失效機(jī)理、失效原因、預(yù)防控制、熱點(diǎn)案例等維度,綜合理論知識(shí)分析與工程實(shí)踐經(jīng)驗(yàn),為解決驅(qū)動(dòng)電機(jī)轉(zhuǎn)軸電壓及其軸承電流難題提供了全面的技術(shù)依據(jù)。
汽車驅(qū)動(dòng)電機(jī)最重要的技術(shù)發(fā)展趨勢是高效率、高功率密度、低噪聲。為此,大功率驅(qū)動(dòng)、高電壓平臺(tái)、高載頻控制、高速電機(jī)結(jié)構(gòu)、非對稱電磁設(shè)計(jì)、深度融合集成等漸漸成為主流技術(shù)路線,軸承電流腐蝕問題日益凸顯。可以預(yù)見,未來高品質(zhì)的驅(qū)動(dòng)電機(jī)將全面配置軸承電流抑制功能。
-
電流
+關(guān)注
關(guān)注
40文章
6894瀏覽量
132377 -
電機(jī)
+關(guān)注
關(guān)注
142文章
9044瀏覽量
145806 -
驅(qū)動(dòng)電機(jī)
+關(guān)注
關(guān)注
9文章
412瀏覽量
30745
原文標(biāo)題:驅(qū)動(dòng)電機(jī)軸承電蝕失效研究
文章出處:【微信號(hào):EDC電驅(qū)未來,微信公眾號(hào):EDC電驅(qū)未來】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評(píng)論請先 登錄
相關(guān)推薦
評(píng)論