在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

硬件工程師經常犯的幾個典型錯誤

電子Online ? 來源:電子Online ? 作者:電子Online ? 2022-11-07 10:59 ? 次閱讀

完成一個項目設計,需要考慮的因素很多。對于硬件工程師來說,一不留神就會犯錯,以下總結了一些在系統成本、低功耗設計、信號完整性、可靠性設計上容易陷入的誤區,供大家參考。

節約成本

現象一

這些拉高/拉低的電阻用多大的阻值關系不大,就選個整數5kΩ吧

市場上不存在5kΩ的阻值,最接近的是4.99kΩ(精度1%),其次是5.1kΩ(精度5%),其成本分別比精度為20%的4.7kΩ高4倍和2倍。

20%精度的電阻阻值只有1、1.5、2.2、3.3、4.7、6.8幾個類別(含10的整數倍)。類似地,20%精度的電容也只有以上幾種值,如果選了其它的值就必須使用更高的精度成本就翻了幾倍,卻不能帶來任何好處。

現象二

這點邏輯用74XX的門電路搭也行,但太土,還是用CPLD吧,顯得高檔多了

74XX的門電路只幾毛錢,而CPLD至少也得幾十塊,(GAL/PAL雖然只幾塊錢,但公司推薦使用)。成本提高了N倍不說,還給生產、文檔等工作增添數倍的工作。

現象三

我們的系統要求這么高,包括MEM、CPUFPGA等所有的芯片都要選最快的

在一個高速系統中并不是每一部分都工作在高速狀態。而器件速度每提高一個等級,價格差不多要翻倍,另外還給信號完整性問題帶來極大的負面影響。

現象四

這板子的PCB設計要求不高,就用細一點的線,自動布吧

自動布線必然要占用更大的PCB面積,同時產生比手動布線多好多倍的過孔。在批量很大的產品中,PCB廠家降價所考慮的因素除了商務因素外,就是線寬和過孔數量,它們分別影響到PCB的成品率和鉆頭的消耗數量。節約了供應商的成本,也就給降價找到了理由。

現象五

程序只要穩定就可以了,代碼長一點、效率低一點不是關鍵

CPU的速度和存儲器的空間都是用錢買來的。如果寫代碼時多花幾天時間提高一下程序效率,那么從降低CPU主頻和減少存儲器容量所節約的成本絕對是劃算的。CPLD/FPGA設計也類似。

低功耗設計

現象一

我們這系統是220V供電,就不用在乎功耗問題了

低功耗設計并不僅僅是為了省電,更多的好處在于降低了電源模塊及散熱系統的成本、由于電流的減小也減少了電磁輻射和熱噪聲的干擾。隨著設備溫度的降低,器件壽命則相應延長。半導體器件的工作溫度每提高10度,壽命則縮短一半。

現象二

這些總線信號都用電阻拉一下,感覺放心些

信號需要上下拉的原因很多,但也不是個個都要拉。上下拉電阻拉一個單純的輸入信號,電流也就幾十微安以下。但拉一個被驅動了的信號,其電流將達毫安級。現在的系統常常是地址數據各32位,可能還有244/245隔離后的總線及其它信號,都上拉的話,幾瓦的功耗就耗在這些電阻上了。

現象三

CPU和FPGA的這些不用的I/O口怎么處理呢?先讓它空著吧,以后再說

不用的I/O口如果懸空的話,受外界的一點點干擾就可能成為反復振蕩的輸入信號了,而MOS器件的功耗基本取決于門電路的翻轉次數。如果把它上拉的話,每個引腳也會有微安級的電流,所以最好的辦法是設成輸出。

現象四

這款FPGA還剩這么多門用不完,可盡情發揮吧

FGPA的功耗與被使用的觸發器數量及其翻轉次數成正比,所以同一型號的FPGA在不同電路不同時刻的功耗可能相差100倍。盡量減少高速翻轉的觸發器數量是降低FPGA功耗的根本方法。

現象五

這些小芯片的功耗都很低,不用考慮

對于內部不太復雜的芯片功耗是很難確定的,它主要由引腳上的電流確定,一個ABT16244,沒有負載的話耗電大概不到1毫安,但它的指標是每個腳可 驅動60毫安的負載(如匹配幾十歐姆的電阻),即滿負荷的功耗最大可達60*16=960mA,當然只是電源電流這么大,熱量都落到負載身上了。

現象六

這些信號怎么都有過沖啊?只要匹配得好,就可消除了

除了少數特定信號外(如100BASE-T、CML),都是有過沖的,只要不是很大,并不一定都需要匹配,即使匹配也并非要匹配得最好。像TTL的輸出阻抗不到50Ω,有的甚至20Ω,如果也用這么大的匹配電阻的話,那電流就非常大了,功耗是無法接受的,另外信號幅度也將小得不能用。再說一般信號在輸出高電平和輸出低電平時的輸出阻抗并不相同,也沒辦法做到完全匹配。所以對TTL、LVDS、422等信號的匹配只要做到過沖可以接受即可。

系統效率

現象一

這主頻100M的CPU只能處理70%,換200M主頻的就沒事了

系統的處理能力牽涉到多種多樣的因素,在通信業務中其瓶頸一般都在存儲器上,CPU再快,外部訪問快不起來也是徒勞。

現象二

CPU用大一點的CACHE,就應該快了

CACHE的增大,并不一定就導致系統性能的提高,在某些情況下關閉CACHE反而比使用CACHE還快。原因是搬到CACHE中的數據必須得到多次 重復使用才會提高系統效率。所以在通信系統中一般只打開指令CACHE,數據CACHE即使打開也只局限在部分存儲空間,如堆棧部分。

同時也要求程序設計 要兼顧CACHE的容量及塊大小,這涉及到關鍵代碼循環體的長度及跳轉范圍,如果一個循環剛好比CACHE大那么一點點,又在反復循環的話,那就慘了。

現象三

這么多任務到底是用中斷還是用查詢呢?還是中斷快些吧

中斷的實時性強,但不一定快。如果中斷任務特別多的話,這個沒退出來,后面又接踵而至,一會兒系統就將崩潰了。如果任務數量多但很頻繁的話,CPU的很大精力都用在進出中斷的開銷上,系統效率極為低下。如果改用查詢方式反而可極大提高效率,但查詢有時不能滿足實時性要求。所以,最好的辦法是在中斷中查 詢,即進一次中斷就把積累的所有任務都處理完再退出。

現象四

存儲器接口的時序都是廠家默認的配置,不用修改的

BSP對存儲 器接口設置的默認值都是按最保守的參數設置的,在實際應用中應結合總線工作頻率和等待周期等參數進行合理調配。有時把頻率降低反而可提高效率,如RAM的存取周期是70ns,總線頻率為40M時,設3個周期的存取時間,即75ns即可;若總線頻率為50M時,必須設為4個周期,實際存取時間卻放慢到了 80ns。

現象五

一個CPU處理不過來,就用兩個分布處理,處理能力可提高一倍

對于搬磚頭來說,兩個人應該比一個人的效率高一倍;對于作畫來說,多一個人只能幫倒忙。使用幾個CPU需對業務有較多的了解后才能確定,盡量減少兩個CPU間協調的代價,使1+1盡可能接近2,千萬別小于1。

現象六

這個CPU帶有DMA模塊,用它來搬數據肯定快

真正的DMA是由硬件搶占總線后同時啟動兩端設備,在一個周期內這邊讀,那邊些。但很多嵌入CPU內的DMA只是模擬而已,啟動每一次DMA之前要做不少準備工作(設起始地址和長度等)。

在傳輸時往往是先讀到芯片內暫存,然后再寫出去,即搬一次數據需兩個時鐘周期,比軟件來搬要快一些(不需要取指令, 沒有循環跳轉等額外工作),但如果一次只搬幾個字節,還要做一堆準備工作,一般還涉及函數調用,效率并不高。所以這種DMA只對大數據塊才適用。

信號完整性

現象一

這些信號都經過仿真了,絕對沒問題

仿真模型不可能與實物一模一樣,連不同批次加工的實物都有差別,就更別說模型了。再說實際情況千差萬別,仿真也不可能窮舉所有可能,尤其是串擾。其它數據也會對WE產生干擾,但干擾在可接受的范圍內,可是當8位總線同時由0變1時,附近的信號就招架不住了。結論是仿真結果僅供參考,還應留有足夠的余 量。

現象二

100M的數據總線應該算高頻信號,至于這個時鐘信號頻率才8K,問題不大

數據總線的值一般是由控制信號或時鐘信號的某個邊沿來采樣的,只要針對這個邊沿保持足夠的建立時間和保持時間即可。此范圍之外有干擾也罷過沖也罷都不會有多大影響(當然過沖最好不要超過芯片 所能承受的最大電壓值)。但時鐘信號不管頻率多低(其實頻譜范圍是很寬的),它的邊沿才是關鍵的,必須保證其單調性,并且跳變時間需在一定范圍內。

現象三

既然是數字信號,邊沿當然是越陡越好

邊沿越陡,其頻譜范圍就越寬,高頻部分的能量就越大;頻率越高的信號就越容易輻射,也就越容易干擾別的信號,而自身在導線上的傳輸質量卻變得越差,因此能用低速芯片的盡量使用低速芯片。

現象四

為保證干凈的電源,去偶電容是多多益善

總的來說去偶電容越多電源當然會更平穩,但太多了也有不利因素:浪費成本、布線困難、上電沖擊電流太大等。去偶電容的設計關鍵是要選對容量并且放對地方,一般的芯片手冊都有爭對去偶電容的設計參考,最好按手冊去做。

現象五

信號匹配真麻煩,如何才能匹配好呢

總的原則是當信號在導線上的傳輸時間超過其跳變時間時,信號的反射問題才顯得重要。信號產生反射的原因是線路阻抗的不均勻造成的,匹配的目的就是為了 使驅動端、負載端及傳輸線的阻抗變得接近。

但能否匹配得好,與信號線在PCB上的拓撲結構也有很大關系,傳輸線上的一條分支、一個過孔、一個拐角、一個接 插件、不同位置與地線距離的改變等都將使阻抗產生變化,而且這些因素將使反射波形變得異常復雜,很難匹配。因此,高速信號僅使用點到點的方式,盡可能地減少 過孔、拐角等問題。

可靠性設計

現象一

這塊單板已小批量生產了,經過長時間測試沒發現任何問題

硬件設計和芯片應 用必須符合相關規范,尤其是芯片手冊中提到的所有參數(耐壓、I/O電平范圍、電流、時序、溫度PCB布線、電源質量等),不能光靠試驗來驗證。

公司有不少產品都有過慘痛的教訓,產品賣了一兩年,IC廠家換了個生產線,咱們的板子就不轉了,原因就是人家的芯片參數發生了點變化,但并沒有超出手冊的范圍。如果你以手冊為準,那他怎么變化都不怕,如果參數變得超出手冊范圍了還可找他索賠(假如這時你的板子還能轉,那你的可靠性就更牛了)。

現象二

這部分電路只要要求軟件這樣設計就不會有問題

硬件上很多電氣特性直接受軟件控制,但軟件是經常發生意外的,程序跑飛了之后無法預料會有什么操作。設計者應確保不論軟件做什么樣的操作硬件都不應在短時間內發生永久性損壞。

現象三

用戶操作錯誤發生問題就不能怪我了

要求用戶嚴格按手冊操作是沒錯的,但用戶是人,就有犯錯的時候,不能說碰錯一個鍵就死機,插錯一個插頭就燒板子。所以對用戶可能犯的各種錯誤必須加以保護。

現象四

這板子壞的原因是對端的板子出問題了,也不是我的責任

對于各種對外的硬件接口應有足夠的兼容性,不能因為對方信號不正常,你就歇著了。它不正常只應影響到與其有關的那部分功能,而其它功能應能正常工作,不應徹底罷工,甚至永久損壞,而且一旦接口恢復,你也應立即恢復正常。

審核編輯 :李倩

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 存儲器
    +關注

    關注

    38

    文章

    7514

    瀏覽量

    164001
  • 精度
    +關注

    關注

    0

    文章

    261

    瀏覽量

    20054
  • 硬件工程師
    +關注

    關注

    187

    文章

    361

    瀏覽量

    75682

原文標題:硬件工程師經常犯的幾個典型錯誤,給大家整理后貼出來了

文章出處:【微信號:電子Online,微信公眾號:電子Online】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    硬件工程師工作前VS工作后!抱歉!是我想的太簡單了!# #電工 #電子愛好者

    硬件工程師
    MDD辰達半導體
    發布于 :2025年01月08日 18:15:18

    焊板子前,焊板子后,硬件工程師居然兩幅面孔!# #電工 #電路知識 #電路原理

    硬件工程師
    MDD辰達半導體
    發布于 :2025年01月07日 18:15:30

    笑死,掌握一眼識別資深硬件工程師的訣竅了!# #電路知識 #電工 #硬核拆解

    硬件工程師
    MDD辰達半導體
    發布于 :2024年12月20日 17:48:17

    FPGA算法工程師、邏輯工程師、原型驗證工程師有什么區別?

    ,如數字信號處理、圖像處理、人工智能等,并將其轉化為適合 FPGA 實現的硬件邏輯。重點在于算法的性能提升、資源利用效率以及與系統的集成。 FPGA 邏輯工程師: 側重于 FPGA 內部邏輯電路
    發表于 09-23 18:26

    嵌入式軟件工程師硬件工程師的區別?

    嵌入式軟件工程師硬件工程師的區別? 嵌入式軟件工程師 嵌入式軟件工程師是軟件開發領域中的一種專業工程師
    發表于 05-16 11:00

    大廠電子工程師常見面試題#電子工程師 #硬件工程師 #電路知識 #面試題

    電子工程師電路
    安泰小課堂
    發布于 :2024年04月30日 17:33:15

    如何入門硬件工程師

    想跨行業做硬件設計工程師,應該如何學習規劃呢
    發表于 03-17 21:49

    如何搞崩一個硬件工程師心態?試試對ta說這幾句

    硬件工程師
    揚興科技
    發布于 :2024年02月20日 18:05:49
    主站蜘蛛池模板: 又大又粗又爽黄毛片| 天天综合天天综合色在线| 欧美爱爱网| 很狠操| 爱爱欧美| 天天操天天干天天玩| 久久久午夜| 26uuu欧美日本| 亚洲一区欧美二区| 国产男女怕怕怕免费视频| 亚洲天堂网站| 色老头网址| 黄色视屏免费在线观看| 操你啦网站| 日日爽夜夜爽| 日本xxxxx69| 欧美精品一区二区三区在线播放| 曰本性l交片视频视频| 四虎国产精品影库永久免费| 欧美城天堂网| 成人综合色站| 色天天综合色天天看| 亚洲乱淫| 国产精品第页| 日韩色爱| 丁香六月在线观看| 日韩手机看片| 国产女人小便视频| 一区二区三区影院| 欧美有码视频| 99草视频| 国产大毛片| 激情久久久久久久久久久| 色偷偷狠狠色综合网| 久久久久国产精品免费免费不卡| 亚洲手机看片| 免费在线播放视频| 伊人久久大香线蕉综合高清 | 日本亚洲黄色| h视频网站在线| 亚洲国产福利|