對于需要生成負電壓軌的應用,可以考慮多種拓撲結構。但是,如果輸入和/或輸出端的絕對電壓超過24 V,并且所需的輸出電流可以達到幾安,則充電泵和LDO負壓穩壓器將會因其低電流能力被棄用,而其電磁組件的尺寸,會導致反激式和?uk轉換器解決方案變得相當復雜。
因此,在這種條件下,反相降壓-升壓拓撲能在高效率和小尺寸之間達成較好的折衷效果。要實現這些優勢,必須充分了解高壓條件下反相降壓-升壓拓撲的工作原理。在深入研究這些細節之前,我們首先簡要回顧一下反相降壓-升壓拓撲。然后,比較反相降壓-升壓拓撲、降壓拓撲和升壓拓撲的關鍵電流路徑。
反相降壓-升壓拓撲屬于三種基本的非隔離開關拓撲。這些拓撲結構都包括一個控制晶體管(通常是一個MOSFET)、一個二極管(可能是肖特基二極管或有源二極管,即同步MOSFET),以及一個作為儲能元件的功率電感。這三個元件之間的共同連接稱為開關節點。功率電感相對于開關節點的位置決定拓撲結構。
如果線圈位于開關節點和輸出之間,將構成DC-DC降壓轉換器,我們在下文中將其簡稱為降壓轉換器。或者,如果線圈位于輸入和開關節點之間,將構成DC-DC升壓轉換器,簡稱為升壓轉換器。最后,如果線圈位于開關節點和地(GND)之間,則構成DC-DC反相降壓-升壓轉換器。
在每個開關周期,甚至在連續導通模式(CCM)下,所有三種拓撲包含的組件和PCB走線的電流會快速變化,導致圖1c、2c和3c突出顯示的噪聲轉移。盡可能設計較小的熱回路,以降低電路輻射的電磁干擾(EMI)。這里,需要提醒大家的是,熱回路并非一定是電流循環流動的物理回路。實際上,在圖1、圖2和圖3突出顯示的各個回路中,由紅色和藍色突出顯示的組件和線路構成熱回路,其電流急劇轉換并不會發生在相同方向。
對于圖3所示的CCM下運行的反相降壓-升壓轉換器,熱回路由CINC、Q1和D1構成。與降壓和升壓拓撲中的熱回路相比,反相降壓-升壓拓撲的熱回路包含位于輸入和輸出端的組件。在這些組件中,當控制MOSFET開啟時,二極管(或者,如果使用同步MOSFET,則為體二極管)的反相恢復會生成最高的di/dt和EMI。由于需要全面的布局概念來考慮控制這兩個方面的輻射EMI,所以您肯定不希望通過低估在高輸入和/或輸出電壓條件下所需的反相降壓-升壓電感,通過過大的線圈電流紋波生成額外的輻射EMI。對于依賴自己所熟悉的升壓拓撲來確定反相降壓-升壓電路電感的工程師來說,他們會面臨這種風險,我們可以通過比較這兩種拓撲看清這一點。
升壓拓撲和反相降壓-升壓拓撲生成的絕對輸出電壓的幅度要高于輸入電壓。但是,這兩種拓撲之間存在差異,可以通過CCM中各自的占空比(在公式1和公式2中提供)來突出顯示。請注意,這些都是一階近似值,未考慮通過肖特基二極管和功率MOSFET時產生的壓降等影響。
圖4左側顯示的是在VIN= 12V時,這些占空比變化的一階近似值與|VOUT|的關系。此外,假設在這兩種情況下,電源線圈的開關頻率(fSW)為1MHz,電感為1μH,則線圈電流紋波變化與VOUT的關系如圖4右側所示。
從圖4可以看出,與升壓拓撲相比,|VOUT|更低時,反相降壓-升壓拓撲的占空比將會超過50%:分別為12V和24V。大家可以參考圖5加深理解。在升壓拓撲中,電感位于輸入和輸出之間的路徑中。因此,通過功率電感(VL)的電壓會并入VIN,以提供所需的VOUT。但是,在反相降壓-升壓拓撲中,輸出電壓由VL提供。在這種情況下,功率電感必須為輸出端提供更多電能,這就是|VOUT|更低時,占空比卻已達到50%的原因。
我們可以換種說法來表述,當|VOUT|/VIN比下降時,反相降壓-升壓拓撲的占空比降低速度要比升壓拓撲慢。這是設計期間要考慮的一個重要事實,大家可以參考圖6更好地了解其影響,其中已重繪占空比和線圈電流紋波的一階近似值,但是是占空比與VIN之間的曲線。
如圖6所示,線圈電流紋波(ΔIL)與VIN和D成正比。在升壓拓撲中,當VIN高于VOUT的一半時,占空比下降的速度快于VIN升高的速度,從VIN= 24V時的50%下降到VIN= 42V時的25%,如圖6左側圖中的藍色曲線所示。因此,對于圖6右側圖所示的升壓拓撲,在VIN高于24 V時,ΔIL會快速降低。但是,對于反相降壓-升壓拓撲,如之前圖4所示,當|VOUT|/VIN下降時,或者說,VIN增大,以提供固定的|VOUT|時,D非常緩慢地下降。圖6左側圖中的綠色曲線顯示了這一點,當VIN升高62.5%,從48V升高到78V時,占空比僅損失25%。由于D的下降不能抵消VIN的升高,線圈電流紋波會隨VIN升高而大幅增加,如圖6右側圖中的綠色曲線所示。總體來說,與升壓拓撲相比,反相降壓-升壓拓撲在高壓條件下具有更高的線圈電流紋波,所以,在相同的fSW下,反相降壓-升壓拓撲需要更高的線圈值。我們可以借助圖7,根據具體情況運用這一知識,當然,也是基于一階近似值。
我們考慮一下VIN= 7V至72V,VOUT= –12V,電流為5A的應用。在這個高輸出電流下,我們選擇使用同步控制器(LTC3896)來實現高效率。在CCM中使用LTC3896時,建議將ΔIL保持在IOUT,MAX(例如,為5A時)的30%和70%之間。因此,我們在設計時,希望在整個輸入電壓范圍內,ΔIL保持在1.5A和3.5A之間。此外,保持在這個推薦的范圍內,也就是IOUT,MAX的30%和70%之間意味著比率最多能達到2.33,即70%除以30%,也就是輸入電壓范圍內最高電流紋波與最低電流紋波之間的比率。如之前觀察到的結果,對于反相降壓-升壓拓撲這類ΔIL會隨VIN大幅變化的拓撲來說,這并不是一項簡單的任務。參考圖7可以看出,當fSW= 1MHz,L = 1μH時,線圈電流紋波會在4.42A和10.29A之間變化,這個值太高了。要使最低ΔIL達到我們建議的下限1.5A或IOUT,MAX的30%,我們需要將現在的值4.42A降低三倍。我們可以將fSW設置為300 kHz,選擇10μH電感,加上FREQ引腳上的47.5 k?電阻來實現這一點。實際上,這會使ΔIL降低,(1μH×1MHz)/(300kHz×10μH) =1/3。由于這種降低,現在在整個輸入電壓范圍內,線圈電流紋波(ΔIL)會在1.5A和3.4A之間(IOUT,MAX的30%和68%之間)變化。我們會獲得 LTC3896 數據手冊最后一頁所提供的電路,如圖8所示。
對于線圈電流紋波,我們可以使用LTspice來仿真相同的LTC3896電路,如圖9所示,以得出更準確的值。在圖10中,VIN= 7V和72V時,ΔIL分別等于約1.45A和3.5A,這與之前根據圖7以及降低fSW和L獲取的一階近似值一致。請注意,圖10所示的線圈電流在流向RSENSE時,被視為是正電流。使用LTspice仿真還有一個好處,可以確定運行期間的峰值線圈電流,即在最低輸入電壓為7V時的電流。
如圖10所示,應用的峰值線圈電流接近15.4A。獲得這個值后,可以選擇電流額定值足夠高的功率電感。
回到圖7,在VIN的范圍為12V至40V,VOUT= –150V這個假設情況下,其中也提供了電流紋波值。要注意的第一點是,在相同的fSW和L下,要得出更高的VOUT,電流紋波會大幅增高。如此高的ΔIL往往不可取,因此,與之前的示例相比,我們需要降低更多倍數,這意味著在相同的fSW下,采用更大的電感。第二點是關于ΔIL在整個輸入電壓范圍內的變化。在之前的示例中,VOUT= –12V,從最低紋波到最高紋波,ΔIL只增加了約2.33倍,輸入電壓卻增長了超過10倍。在當前的示例中,VOUT= –150V,從最低電流紋波到最高電流紋波,ΔIL已經增大2.85倍,但輸入電壓只增大了3.33倍,從12V增大到40V。還好,這種挑戰只存在于CCM情況下。在斷續導通模式(DCM)下,IOUT(MAX)的30%至70%這種限制不再適用。無論如何,在IOUT(MAX)= 5A時,要一步將VIN= 12V轉換為VOUT= –150V還是太過費力。在任何情況下,要進行這種電壓轉換時,需要的輸出電流一般很低,表示我們采用DCM模式。例如,LTC3863數據手冊最后一頁所示的電路就是如此,如圖11所示。因為DC電流低,所以在這些情況下使用非同步控制器(例如LTC3863)就足以提供不錯的效率。關于在DCM下的這種LTC3863設計,LTspice提供的LTC3863電路是一個不錯的工具,可用于優化線圈選擇。
反相降壓-升壓拓撲的熱回路包含位于輸入和輸出端的組件,所以其布局難度要高于降壓拓撲和升壓拓撲。雖然與升壓拓撲有些類似的地方,但在類似的應用條件下,反相降壓-升壓拓撲的電流紋波更高,這是因為線圈是其唯一的輸出來源(如果我們忽略輸出電容)。
對于具有高輸入和/或輸出電壓的反相降壓-升壓應用,線圈電流紋波可能更高。為了控制電流紋波,與升壓拓撲相比,反相降壓-升壓拓撲會使用更高的電感值。我們通過一個實例展示了如何根據應用條件來快速調節電感。
評論