人們常常想當然地為PCB的電路上電,殊不知這可能造成破壞以及有損或無損閂鎖狀況。這些問題可能并不突出,直到量產開始,器件和設計的容差接受檢驗時才被發現,但為時已晚,項目和產品的時間及交貨將會受到極大影響,成本大幅攀升。為了解決這一階段中發現的錯誤,將需要進行大量修改,包括PCB布局變更、設計更改和額外的異常現象等。
隨著集成電路時代的到來,許多功能模塊被集成到一個IC中,因而需要利用多個電源為這些模塊供電。這些電源的電壓有時候相同,但更多時候是不同的。市場上的片上系統(SoC) IC越來越多,這就產生了對電源進行時序控制和管理的需求。
本應用筆記討論設計工程師在新設計中必須考慮的某些更微妙的電源問題,特別是當IC需要多個不同的電源時。目前,一些較常用的電源電壓是:+1.8V、+2.0V、+2.5V、+3.3V、+5V、?5V、+12V和?12V。
ADI公司的所有數據手冊都含有“絕對最大額定值”(AMR)部分,它說明為避免造成破壞,對引腳或器件可以施加的最大電壓、電流或溫度。AD7654PulSAR 16位ADC是采用三個(或更多)獨立電源的混合信號ADC的范例。這些ADC需要數字電源(DVDD)、模擬電源(AVDD)和數字輸入/輸出電源(OVDD)。它們是ADC,用于將模擬信號轉換成數字代碼,因此需要一個模擬內核來處理傳入的模擬輸入。數字內核負責處理位判斷過程和控制邏輯。I/O內核用于設置數字輸出的電平,以便與主機邏輯接口(電平轉換)。ADC的電源規格可以在相應數據手冊的“絕對最大額定值”部分找到。表1摘自AD7654 (Rev. B)數據手冊的“絕對最大額定值”部分。
表1. AD7654的絕對最大額定值(Rev. B)注意,表1中所有三個電源的范圍都是?0.3V至+7V。相對于DVDD和OVDD,AVDD的范圍是+7V至?7V,這就確認了AVDD和DVDD無論哪一個先上電都是可行的。此外,AVDD和OVDD無論哪一個先上電也是可行的。然而,DVDD與OVDD之間存在限制。技術規格規定,OVDD最多只能比DVDD高0.3V,因此DVDD必須在OVDD之前或與之同時上電。如果OVDD先上電(假設5V),則DVDD在上電時比OVDD低5V,這不符合“絕對最大額定值”要求,可能會損壞器件。模擬輸入INAx、INBx、REFx、INxN和REFGND的限制是:這些輸入不得超過AVDD +0.3V或AGND ?0.3V。這說明,如果模擬信號或基準電壓源先于AVDD存在,則模擬內核很可能會上電到閂鎖狀態。這通常是一種無損狀況,但流經AVDD的電流很容易逐步升至標稱電流的10倍,導致ADC變得相當熱。這種情況下,內部靜電放電(ESD)二極管變為正偏,進而使模擬電源上電。為解決這個問題,輸入和/或基準電壓源在ADC上電時應處于未上電或未連接狀態。
同樣,數字輸入電壓范圍為?0.3V至DVDD +0.3V。這說明,數字輸入必須小于DVDD +0.3V。因此,在上電時,DVDD必須先于微處理器/邏輯接口電路或與之同時上電。與上述模擬內核情況相似,這些引腳上的ESD二極管也可能變為正偏,使數字內核上電到未知狀態。
AD7621、AD7622、AD7623、AD7641和AD7643等PulSAR ADC速度更快,是該系列的新型器件,采用更低的2.5V電源(AD7654則采用5V電源)。AD7621和AD7623具有明確規定的上電序列。表2摘自AD7621 (Rev.0)數據手冊的“絕對最大額定值”部分。
表2. AD7621的絕對最大額定值(Rev. 0)同樣,OVDD與DVDD之間存在限制。“絕對最大額定值”規定:OVDD必須小于或等于DVDD+0.3V,而DVDD則必須小于2.3V。一旦DVDD在上電期間達到2.3V,該限制便不再適用。如果不遵守該限制,AD7621(和AD7623)可能會受損(見圖1)。
圖1. 可能的上電/關斷序列—AD7621 (Rev. 0)因此,一般上電序列可能是這樣的:AVDD、DVDD、OVDD、VREF。但是,每個應用都不一樣,需要具體分析。注意,器件關斷與器件上電同樣重要,切記遵守同樣的規格要求。圖1所示為AD7621的典型上電/關斷序列。對于這些ADC,模擬輸入和基準電壓源的情況與上文所述相同。對任何模擬輸入引腳施加電壓都可能導致ESD二極管變為正偏,從而使模擬內核上電到未知狀態。這些ADC的數字輸入和輸出略有不同,因為這些器件應支持5 V數字輸入。這些ADC是AD7654的速度升級版本,數字輸入和輸出均與OVDD電源相關,因為它能支持更高的3.3V電壓。注意:數字輸入限制為5.5V,而AD7654則為DVDD+0.3V。AD7794 Σ-Δ型24位ADC是另一個很好的例子。表3摘自AD7794 (Rev. D)數據手冊的“絕對最大額定值”部分。
表3. AD7794的絕對最大額定值(Rev. D)該ADC的問題與基準電壓有關,它必須小于AVDD+ 0.3 V。因此,AVDD必須先于基準電壓或與之同時上電。
ADI公司提供許多電源時序控制器件。一般而言,其工作原理是:當第一個調節器的輸出電壓達到預設閾值時,就會開始一段時間延遲,延遲結束后才會使能后續調節器上電。關斷期間的程序與此相似。時序控制器也可以用于控制電源良好信號等邏輯信號的時序,例如:對器件或微處理器施加一個復位信號,或者簡單地指示所有電源均有效。
如今大部分要求高速和低功耗的電路PCB上都需要多個電源,例如:+1.8V、+2.0V、+2.5V、+3.3V、+5V、?5V、+12V和?12V。為PCB上的這些電源供電并不是一件輕而易舉的事情。必須仔細分析,設計一個正確可靠的上電和關斷序列。采用分立設計變得越來越困難,解決之道就是采用電源時序控制IC,只要改變一下代碼就能改變上電順序,而不用變更PCB布局布線。
原文標題:多電源IC的上電時序控制你搞明白了么?
文章出處:【微信公眾號:亞德諾半導體】歡迎添加關注!文章轉載請注明出處。
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。
舉報投訴
原文標題:多電源IC的上電時序控制你搞明白了么?
文章出處:【微信號:analog_devices,微信公眾號:analog_devices】歡迎添加關注!文章轉載請注明出處。
相關推薦
變化,滿足了日益增長的音視頻系統應用需求。 電源時序器1.0:基礎的時序控制 最初,電源
發表于 12-20 09:32
?123次閱讀
1、關于ADS8698有上電時序要求嗎?AVDD和DVDD 以及軟件配置引腳間的順序有時序要求嗎?
2、觸發內部基準電壓的條件有哪些?AVDD?還是有別的觸發源,如果內部基準觸發不了
發表于 11-19 06:12
連在一起,形成-5V提供給VA-;
難道這三路電源上電,有嚴格的時序要求嗎,為什么-5V,容易出現導致IC發熱不能正常工作,如何避免這個
發表于 10-30 07:03
按照TAS5711的datasheet中的上電時序進行上電,芯片正常工作,但是無法編輯寄存器,是時序
發表于 10-22 06:58
電子發燒友網站提供《雙電源電壓DSP的電源時序控制解決方案.pdf》資料免費下載
發表于 10-11 11:33
?0次下載
電子發燒友網站提供《FPGA電源時序控制.pdf》資料免費下載
發表于 08-26 09:25
?0次下載
有一個項目中用到OPA192這個放大器,有兩個問題:
1.V+是+12V供電的,V-是-12V供電的,想問下+12V和-12V這兩個電有沒有什么必須的上電時序需要
發表于 07-29 08:30
電源時序器和控制繼電器是兩種不同的電子設備,電源時序器通過控制繼電器實現對
發表于 07-08 14:30
?594次閱讀
電源時序器是一種電子設備,用于控制多個電源的開啟和關閉順序,以確保設備按照正確的順序啟動和關閉。電源時序
發表于 07-08 14:19
?771次閱讀
電源時序器是一種用于控制多個電源設備按照一定順序開啟或關閉的電子設備。它廣泛應用于音響、舞臺燈光、電視廣播、工業自動化等領域。本文將介紹電源
發表于 07-08 14:16
?2409次閱讀
電源時序器是一種用于控制多個電源設備按照特定順序開啟或關閉的設備,廣泛應用于音響、燈光、視頻等設備的控制中。然而,在使用過程中,
發表于 07-08 14:14
?2981次閱讀
電源時序器是一種用于控制多個電源設備按照特定順序開啟或關閉的設備。它廣泛應用于音響、燈光、視頻等設備中,以確保設備在啟動和關閉過程中不會相互干擾,從而提高系統的穩定性和可靠性。
發表于 07-08 14:11
?817次閱讀
之前上電,不過有些設計可能要求采用其他序列。正確的上電和關斷時序控制可以防止閂鎖引起的即刻損壞和
發表于 06-26 08:24
?1125次閱讀
你知道激光鉆孔技術有多牛嗎?看完這篇文章你就明白了
發表于 02-29 17:09
?1002次閱讀
可能會開啟、鎖定或以不正確的模式開啟,因為這些器件試圖相互配合工作。面臨的更大挑戰是,上電時與時序和壓擺率相關的 IC 性能可能是溫度、相關電容器、機械應力、老化和其他因素的函數。 當
發表于 02-13 18:05
?1334次閱讀
評論