在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

自制機器學習預測模型技術原理詳解

jf_WZTOguxH ? 來源:AI前線 ? 作者:AI前線 ? 2022-11-30 14:00 ? 次閱讀

2022 FIFA 世界杯火熱進行中!這段時間,這場盛宴吸引了全球球迷的目光。除了讓人心跳加快的賽況和被大家調侃像餛飩皮的吉祥物之外,預測和投注哪支隊伍將會奪冠絕對是球迷最大的樂趣之一。

我也是眾多想要知道今年誰會奪冠的球迷之一。想到就要去做!于是我花了 2 天時間,用 DolphinScheduler 制作了一個機器學習預測模型來預測 2022 年 FIFA 世界杯的冠軍,而且每天能獲得一個 betting_stratrgy。

這個事情并不復雜,實際上只需要 3 個步驟就可以完成預測,我把實現的過程在 GitHub 上分享出來了:https://github.com/jieguangzhou/FIFA-World-Cup-2022/tree/master

這是我的預測結果:

aabdc264-7070-11ed-8abf-dac502259ad0.png

我還錄制了一個視頻來解釋整個工作的過程和原理,希望能幫助你享受這場體育盛宴,或者只是娛樂一下:)

我還錄制了一個視頻來解釋整個工作的過程和原理,希望能幫助你享受這場體育盛宴,或者只是娛樂一下:)

視頻口誤糾正:41s 處應為“塞爾維亞獲勝的幾率”,12:15s 處應為“葡萄牙 vs. 加納”。

視頻中演示所用的 GitHub 地址:https://github.com/jieguangzhou/FIFA-World-Cup-2022/tree/master

下面是這個項目的具體實現方法,感興趣的朋友不妨試試。

賽事播報

世界杯冠軍預測

使用兩種不同預測方法的結果:

1. 基于球隊獲勝概率模擬 1000 次世界杯預選賽結果

獲得冠軍的概率

aae2479c-7070-11ed-8abf-dac502259ad0.png

前四名

aaf9f8b0-7070-11ed-8abf-dac502259ad0.png

2. 選擇獲勝概率高的球隊

ab08a680-7070-11ed-8abf-dac502259ad0.png

所有比賽結果可在以下兩個文件中查看

https://github.com/jieguangzhou/FIFA-World-Cup-2022/blob/workflow-pro/results/predict.txt

https://github.com/jieguangzhou/FIFA-World-Cup-2022/blob/workflow-pro/results/results.csv

以上結果來自分支 workflow-pro。該分支將訓練更長的模型并運行更多次的模擬比賽。

賽事播報

我是如何建立這個模型的?

1

三步構建預測系統

Step-1 啟動 DolphinScheduler

我們可以使用 Docker 啟動 Dolphinscheduler 獨立服務

docker run --name dolphinscheduler-standalone-server -p 12345:12345 -p 25333:25333 -d jalonzjg/dolphinscheduler-fifa

如果沒有安裝 Doker,可到 https://www.docker.com/ 下載

接著,你可以在 http://localhost:12345/dolphinscheduler/ui 登錄 DolphinScheduler

用戶:admin 密碼:dolphinscheduler123

ab389b6a-7070-11ed-8abf-dac502259ad0.png

Step-2 提交流程

python3 -m pip install apache-dolphinscheduler==3.1.1

export PYDS_HOME=。/

python3 pyds.py

您可以單擊Project -》 FIFA

ab4409fa-7070-11ed-8abf-dac502259ad0.png

然后,我們可以看到 2 個工作流程

training:使用 FLAML 訓練模型

predict:使用模型預測哪個國家會贏得世界杯

ab583e34-7070-11ed-8abf-dac502259ad0.png

Step-3 運行工作流

開始訓練工作流程

ab6faf06-7070-11ed-8abf-dac502259ad0.png

我們可以在工作流完成后查看日志。

ab7b78b8-7070-11ed-8abf-dac502259ad0.png

開啟預測工作流

工作流完成后可查看日志。

ab9a0134-7070-11ed-8abf-dac502259ad0.png

審核編輯 :李倩

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 模型
    +關注

    關注

    1

    文章

    3252

    瀏覽量

    48874
  • 機器學習
    +關注

    關注

    66

    文章

    8421

    瀏覽量

    132703

原文標題:預測 2022 年 FIFA 世界杯冠軍大概率是荷蘭!自制機器學習預測模型技術原理詳解

文章出處:【微信號:AI前線,微信公眾號:AI前線】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    【「具身智能機器人系統」閱讀體驗】2.具身智能機器人大模型

    近年來,人工智能領域的大模型技術在多個方向上取得了突破性的進展,特別是在機器人控制領域展現出了巨大的潛力。在“具身智能機器人大模型”部分,作
    發表于 12-29 23:04

    ASR和機器學習的關系

    自動語音識別(ASR)技術的發展一直是人工智能領域的一個重要分支,它使得機器能夠理解和處理人類語言。隨著機器學習(ML)技術的迅猛發展,AS
    的頭像 發表于 11-18 15:16 ?335次閱讀

    AI大模型與深度學習的關系

    AI大模型與深度學習之間存在著密不可分的關系,它們互為促進,相輔相成。以下是對兩者關系的介紹: 一、深度學習是AI大模型的基礎 技術支撐 :
    的頭像 發表于 10-23 15:25 ?796次閱讀

    AI大模型與傳統機器學習的區別

    AI大模型與傳統機器學習在多個方面存在顯著的區別。以下是對這些區別的介紹: 一、模型規模與復雜度 AI大模型 :通常包含數十億甚至數萬億的參
    的頭像 發表于 10-23 15:01 ?662次閱讀

    【《時間序列與機器學習》閱讀體驗】+ 時間序列的信息提取

    本人有些機器學習的基礎,理解起來一點也不輕松,加油。 作者首先說明了時間序列的信息提取是時間序列分析的一個重要環節,目標是從給定的時間序列數據中提取出有用的信息和特征,以支持后續的分析和預測任務,可以
    發表于 08-14 18:00

    【「時間序列與機器學習」閱讀體驗】+ 簡單建議

    這本書以其系統性的框架和深入淺出的講解,為讀者繪制了一幅時間序列分析與機器學習融合應用的宏偉藍圖。作者不僅扎實地構建了時間序列分析的基礎知識,更巧妙地展示了機器學習如何在這一領域發揮巨
    發表于 08-12 11:21

    【「時間序列與機器學習」閱讀體驗】全書概覽與時間序列概述

    如何通過根因分析技術獲得導致故障的維度和元素,包括基于時間序列異常檢測算法的根因分析、基于熵的根因分析、基于樹模型的根因分析、規則學習等。 ●第7章“智能運維的應用場景”:介紹智能運維領域的應用,包括
    發表于 08-07 23:03

    【《大語言模型應用指南》閱讀體驗】+ 基礎知識學習

    今天來學習大語言模型在自然語言理解方面的原理以及問答回復實現。 主要是基于深度學習和自然語言處理技術。 大語言模型涉及以下幾個過程: 數據收
    發表于 08-02 11:03

    【《大語言模型應用指南》閱讀體驗】+ 基礎篇

    今天開始學習《大語言模型應用指南》第一篇——基礎篇,對于人工智能相關專業技術人員應該可以輕松加愉快的完成此篇閱讀,但對于我還是有許多的知識點、專業術語比較陌生,需要網上搜索學習更多的資
    發表于 07-25 14:33

    Al大模型機器

    豐富的知識儲備。它們可以涵蓋各種領域的知識,并能夠回答相關問題。靈活性與通用性: AI大模型機器人具有很強的靈活性和通用性,能夠處理各種類型的任務和問題。持續學習和改進: 這些模型可以
    發表于 07-05 08:52

    深度學習模型訓練過程詳解

    深度學習模型訓練是一個復雜且關鍵的過程,它涉及大量的數據、計算資源和精心設計的算法。訓練一個深度學習模型,本質上是通過優化算法調整模型參數,
    的頭像 發表于 07-01 16:13 ?1298次閱讀

    名單公布!【書籍評測活動NO.35】如何用「時間序列與機器學習」解鎖未來?

    設備的運行狀況,生成各種維度的報告。 同時,通過大數據分析和機器學習技術,可以對業務進行預測和預警,從而協助社會和企業進行科學決策、降低成本并創造新的價值。 當今時代,數據無處不在,
    發表于 06-25 15:00

    深入探討機器學習的可視化技術

    機器學習可視化(簡稱ML可視化)一般是指通過圖形或交互方式表示機器學習模型、數據及其關系的過程。目標是使理解
    發表于 04-25 11:17 ?424次閱讀
    深入探討<b class='flag-5'>機器</b><b class='flag-5'>學習</b>的可視化<b class='flag-5'>技術</b>

    詳解機器技術基礎模型

    基礎模型在解決機器技術中的數據稀缺問題上至關重要。它們為使用最少的特定數據學習和適應新任務提供了堅實的基礎。
    發表于 01-08 10:44 ?493次閱讀
    <b class='flag-5'>詳解</b><b class='flag-5'>機器</b>人<b class='flag-5'>技術</b>基礎<b class='flag-5'>模型</b>

    如何使用TensorFlow構建機器學習模型

    在這篇文章中,我將逐步講解如何使用 TensorFlow 創建一個簡單的機器學習模型
    的頭像 發表于 01-08 09:25 ?999次閱讀
    如何使用TensorFlow構建<b class='flag-5'>機器</b><b class='flag-5'>學習</b><b class='flag-5'>模型</b>
    主站蜘蛛池模板: 男人的网址| 91免费视| a免费网站| 免费精品美女久久久久久久久久| 亚洲欧美天堂网| 狠狠色色综合网站| 免费观看高清视频| 68日本xxxxxxxxx| 国产成+人+综合+亚洲欧美丁香花| 黄色成人免费网站| 婷婷丁香啪啪| 操欧洲美女| 女人又色又爽又黄| 五月天狠狠| 久久精品午夜| 色老头成人免费视频天天综合| 免费又黄又爽1000禁片| 99香蕉精品视频在线观看| 在线观看日本免费不卡| 综合久久2o19| 性做久久久久久久免费看| 日韩毛片免费视频一级特黄| 久青草国产手机在线观| 欧美网站免费| 国产美女一区二区三区| 午夜视频免费在线观看| 国产黄mmd在线观看免费| 亚欧乱色束缚一区二区三区| 1024人成软件色www| 中文字幕日韩三级| 日日噜噜夜夜狠狠va视频| 韩国视频在线播放| 韩国r天堂| 天天草综合网| 欧美最猛性xxxx高清| 国产激情三级| 中文字幕亚洲综合久久2| 四虎成人精品在永久在线观看| 久久精品综合| 天天干天天日天天射天天操毛片| 神马午夜在线观看|