聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。
舉報(bào)投訴
-
神經(jīng)網(wǎng)絡(luò)
+關(guān)注
關(guān)注
42文章
4774瀏覽量
100894 -
人工智能
+關(guān)注
關(guān)注
1792文章
47425瀏覽量
238948 -
模型
+關(guān)注
關(guān)注
1文章
3267瀏覽量
48921 -
ML
+關(guān)注
關(guān)注
0文章
149瀏覽量
34669 -
量化
+關(guān)注
關(guān)注
0文章
34瀏覽量
2343
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
labview BP神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)
請(qǐng)問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對(duì)于”BP神經(jīng)網(wǎng)絡(luò)分類“這個(gè)范例有很多不懂的地方,比如
發(fā)表于 02-22 16:08
【PYNQ-Z2試用體驗(yàn)】神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識(shí)
思考問題的過程。人腦輸入一個(gè)問題,進(jìn)行思考,然后給出答案。神經(jīng)網(wǎng)絡(luò)就是在模擬人的思考這一過程。而我們要做的就是以數(shù)學(xué)的方式,將這一抽象的過程進(jìn)行量化。神經(jīng)元與激活函數(shù)人的大腦有大約10
發(fā)表于 03-03 22:10
全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)有什么區(qū)別
全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
發(fā)表于 06-06 14:21
卷積神經(jīng)網(wǎng)絡(luò)如何使用
卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問題,我們似乎可以給出相對(duì)簡(jiǎn)明的答案。
發(fā)表于 07-17 07:21
【案例分享】ART神經(jīng)網(wǎng)絡(luò)與SOM神經(jīng)網(wǎng)絡(luò)
今天學(xué)習(xí)了兩個(gè)神經(jīng)網(wǎng)絡(luò),分別是自適應(yīng)諧振(ART)神經(jīng)網(wǎng)絡(luò)與自組織映射(SOM)神經(jīng)網(wǎng)絡(luò)。整體感覺不是很難,只不過一些最基礎(chǔ)的概念容易理解不清。首先ART神經(jīng)網(wǎng)絡(luò)是競(jìng)爭(zhēng)學(xué)習(xí)的一個(gè)代表,
發(fā)表于 07-21 04:30
人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法有哪些?
人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實(shí)際問題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
發(fā)表于 08-01 08:06
如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?
原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測(cè)的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測(cè)
發(fā)表于 07-12 08:02
輕量化神經(jīng)網(wǎng)絡(luò)的相關(guān)資料下載
原文鏈接:【嵌入式AI部署&基礎(chǔ)網(wǎng)絡(luò)篇】輕量化神經(jīng)網(wǎng)絡(luò)精述--MobileNet V1-3、ShuffleNet V1-2、NasNet深度神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用在圖像分類、物體檢測(cè)等
發(fā)表于 12-14 07:35
卷積神經(jīng)網(wǎng)絡(luò)一維卷積的處理過程
inference在設(shè)備端上做。嵌入式設(shè)備的特點(diǎn)是算力不強(qiáng)、memory小。可以通過對(duì)神經(jīng)網(wǎng)絡(luò)做量化來降load和省memory,但有時(shí)可能memory還吃緊,就需要對(duì)神經(jīng)網(wǎng)絡(luò)在memory使用上做進(jìn)一步優(yōu)化
發(fā)表于 12-23 06:16
神經(jīng)網(wǎng)絡(luò)移植到STM32的方法
將神經(jīng)網(wǎng)絡(luò)移植到STM32最近在做的一個(gè)項(xiàng)目需要用到網(wǎng)絡(luò)進(jìn)行擬合,并且將擬合得到的結(jié)果用作控制,就在想能不能直接在單片機(jī)上做神經(jīng)網(wǎng)絡(luò)計(jì)算,這樣就可以實(shí)時(shí)計(jì)算,不依賴于上位機(jī)。所以要解決的主要是兩個(gè)
發(fā)表于 01-11 06:20
基于Hopfield神經(jīng)網(wǎng)絡(luò)的圖像矢量量化
矢量量化是圖像壓縮的重要方法。論文提出了基于Hopfield 神經(jīng)網(wǎng)絡(luò)的圖像矢量量化方法,該方法首先構(gòu)造聚類表格;然后聚類表格按離散Hopfield 神經(jīng)網(wǎng)絡(luò)串行方式運(yùn)行;最后根據(jù)
發(fā)表于 07-11 08:19
?19次下載
人工神經(jīng)網(wǎng)絡(luò)的特點(diǎn)有哪些?
人工神經(jīng)網(wǎng)絡(luò)的特點(diǎn)有哪些?
人工神經(jīng)網(wǎng)絡(luò)突出的優(yōu)點(diǎn)
(1)可以充分逼近任意復(fù)雜的非線性關(guān)系; (2)所有定量或定性
發(fā)表于 03-06 13:48
?2.5w次閱讀
神經(jīng)網(wǎng)絡(luò)和人工智能的關(guān)系是什么
神經(jīng)網(wǎng)絡(luò)和人工智能的關(guān)系是密不可分的。神經(jīng)網(wǎng)絡(luò)是人工智能的一種重要實(shí)現(xiàn)方式,而人工智能則是神經(jīng)網(wǎng)絡(luò)應(yīng)用的廣泛領(lǐng)域。本文將介紹神經(jīng)網(wǎng)絡(luò)和人工智
BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別
BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡(jiǎn)稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個(gè)基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及
BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系
廣泛應(yīng)用的神經(jīng)網(wǎng)絡(luò)模型。它們各自具有獨(dú)特的特點(diǎn)和優(yōu)勢(shì),并在不同的應(yīng)用場(chǎng)景中發(fā)揮著重要作用。以下是對(duì)BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)關(guān)系的詳細(xì)探討,內(nèi)容將涵蓋兩者的定義、原理、區(qū)別、聯(lián)系以及應(yīng)
評(píng)論