在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

上海電力大學《AFM》:一種新型復合固態電解質設計!

鴻之微 ? 來源:鴻之微 ? 2023-02-06 16:35 ? 次閱讀

· ·

全固態鋰電池被認為是未來儲能器件的發展方向,但電解質的使用一直限制著全固態鋰電池的應用。超離子導體是理想的固態電解質,因為它們的離子電導率約為1 mS cm-1,與液體電解質相當,但沒有泄漏和揮發的風險,從而提高了電池的安全性。這種優異的離子轉移能力可以促進Li+的均勻沉積,從而抑制鋰枝晶的生長,提高電池的循環壽命。目前幾種超離子導體(如硫醚和氧化物)制備成本高、制備復雜,并且存在界面電阻高、電化學穩定性差和韌性差等局限性。復合電解質含有有機和無機物質,使電解質具有高離子電導率,同時保持良好的柔韌性和低界面電阻。然而,與快速離子導體和液體電解質相比,它們的離子電導率仍然太低

來自上海電力大學的學者制備了一種新的復合電解質,其中制備了有機聚環氧乙烷(PEO)和無機三氧化鉬(MoO3)納米帶的交替層,然后將多層膜卷成片狀。與通過無序共混制備的類似電解質相比,這里的電解質具有垂直于電極方向的介觀連續有機-無機界面。離子電導率從4.88×10-4增加到1.16×10?3S cm?1。“界面電池”可以在2 C(60℃)下穩定運行超過>2000次充放電循環,即使在10 C下也能快速充放電。理論計算結果表明,這種獨特的組裝方法從根本上消除了PEO和MoO3界面之間的能帶隙,促進了鋰離子(Li+)的傳輸。此外,Mo和PEO軌道之間的電子相互作用擴展了PEO的晶格結構,導致結晶度降低,從而進一步提高了電池性能。本研究提供了一種不同于共混的復合電解質設計,代表了低成本超離子導體開發的新策略。相關文章以“Directed and Continuous Interfacial Channels for Optimized Ion Transport in Solid-State Electrolytes”標題發表在Advanced Functional Materials。

論文鏈接: https://doi.org/10.1002/adfm.202206976

09e6bf38-a4cf-11ed-bfe3-dac502259ad0.png

0a077606-a4cf-11ed-bfe3-dac502259ad0.png

圖1.MoO3納米帶的形貌和結構表征。a) 分散的MoO3納米帶的SEM圖像。b) 自組裝的 MoO3薄膜的 SEM 圖像。c)HRTEM顯微照片,d)SAED圖案和e)MoO3納米帶的STEM圖像。f,g) MoO3納米帶中Mo和O的元素圖。

0a55e12e-a4cf-11ed-bfe3-dac502259ad0.png

圖2.PEO/LiTFSI/3DMoO3電解質的形態學表征。a) 具有交替有機和無機層的制備薄膜示意圖。b) 使用 PL3DM 組裝的電池示意圖。c) PL3DM的照片。d) 偏振光顯微鏡圖像和 e)PL3DM 表面的 SEM 圖像。PL3DM的橫截面SEM圖像f)和g)有機-無機界面基團的放大視圖。h) 有機-無機界面組的EDS線掃描。

0af15820-a4cf-11ed-bfe3-dac502259ad0.png

圖3.PEO/LiTFSI/3DMoO3、PEO/LiTFSI/MoO3和PEO/LiTFSI電解質的電化學性能。a) PL3DM 從 25 到 80 ℃的交流阻抗譜。b) 離子電導率圖和 c) PL3DM、PLM 和 PL 的DSC熱分析圖。d) PL3DM、PLM、PL、PEO 和 LiTFSI 的 XRD 圖譜。e) Li|PL3DM |的CV曲線LiFePO4和 f) Li|PLM|LiFePO4在 0.1 mV s?1下60 ℃. g) PL3DM、PLM 和 PL 在 0.1 mV s?1下60℃下的 LSV 曲線。

0ca639ce-a4cf-11ed-bfe3-dac502259ad0.png

圖4.使用PEO/LiTFSI/3DMoO3、PEO/LiTFSI/MoO3和PEO/LiTFSI電解質的鋰對稱電池的循環性能。a)Li | PL3DM | Li、Li|PLM|Li和Li|PL|Li在0.2mA cm-2和0.2 mAh cm-2、60℃下的恒電流循環性能。插圖顯示了電池在900-1000h循環周期內的電壓-時間曲線。b)Li | PL3DM | Li、Li|PLM|Li和Li|PL|Li的速率性能。c,d) Li|PL3DM|Li,e,f) Li|PLM|Li和g,h) Li|PL|Li的Li金屬負極在大約200小時循環后的表面形態的SEM圖像和相應的放大圖像。

0d47ff0c-a4cf-11ed-bfe3-dac502259ad0.png

圖5.使用PEO / LiTFSI / 3DMoO3,PEO / LiTFSI / MoO3和PEO / LiTFSI電解質的全電池的循環性能。a) Li|LiFePO4電池在0.5 C和60℃下。b)Li|LiFePO4在60℃下的倍率能力。c)Li|LiFePO4電池在2 C和60℃下的長期循環性能。d)PL3DM,e)PLM和f)PL不同循環后的電池的EIS圖。

0da98a7e-a4cf-11ed-bfe3-dac502259ad0.png

圖6.表征 PEO/LiTFSI/3DMoO3電解質在循環過程中的化學變化。a) 用于表征固體電解質的原位拉曼測試裝置示意圖。b)Li|PL3DM PCE內有機-無機界面處的原位拉曼光譜。c)Li|PL|LiFePO4電池內部電解質在50-1000cm-1的原位拉曼光譜。d) XRD 圖譜,e) FT-IR 光譜,以及 f)PL3DM 經過不同循環后的拉曼光譜。

0e1b3818-a4cf-11ed-bfe3-dac502259ad0.png

圖7.PEO和MoO3中電子軌道的計算模擬結果.a) 吸附在 MoO3(010) 表面上的 PEO 的 DOS。b) 吸附在MoO3上的PEO的PDOS (010)。 在這項研究中,使用水熱法制備了細長的MoO3納米帶。通過逐層澆鑄、軋制和切片制備了介觀尺度上有機-無機界面垂直于電極方向排列的PL3DM。與通過簡單共混方法制備的PLM相比,PL3DM中定向界面的存在顯著提高了電解質的離子電導率、離子遷移率和耐高壓性。在定向的有機-無機界面上,Li+離子濃度增加,PEO的結晶度降低,導致離子電導率增加,復合電解質中的離子傳導路徑縮短。PDOS和DFT計算結果表明,界面上有機和無機組分的電子軌道之間的耦合可以形成離子通道,有效降低了Li+傳輸的能壘。新型PL3DM的離子電導率在60℃時高達1.16×103S cm-1,這種出色的離子傳輸能力使使用PL3DM組裝的“界面電池”能夠實現令人滿意的循環性能。Li|PL3DM|LiFePO4在2 C下穩定循環超過2000次。此外,ASSLB可以快速充放電,并在10C的高速率下工作。本工作制備的介觀尺度的“界面電池”為制備低成本、高離子電導率的固態電池提供了新的思路。(文:SSC)

審核編輯 :李倩

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 電解質
    +關注

    關注

    6

    文章

    815

    瀏覽量

    20089
  • 晶格
    +關注

    關注

    0

    文章

    94

    瀏覽量

    9232

原文標題:文章轉載丨上海電力大學《AFM》:一種新型復合固態電解質設計!

文章出處:【微信號:hzwtech,微信公眾號:鴻之微】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    清華深研院劉思捷/港科大Kristiaan Neyts最新AEM封面文章:硫化物復合固態電解質

    復合固態電解質及其全固態鋰離子電池的應用,并被評選為正封面(front cover)文章。 ? ? 本文綜述了硫化物與聚合物復合
    的頭像 發表于 01-07 09:15 ?40次閱讀
    清華深研院劉思捷/港科大Kristiaan Neyts最新AEM封面文章:硫化物<b class='flag-5'>復合</b><b class='flag-5'>固態</b><b class='flag-5'>電解質</b>

    Li3MX6全固態鋰離子電池固體電解質材料

    ? ? 研究背景 Li3MX6族鹵化物(M = Y、In、Sc等,X =鹵素)是新興的全固態鋰離子電池固體電解質材料。與現有的硫化物固體電解質相比,它們具有更高的化學穩定性和更寬的電化學穩定窗口
    的頭像 發表于 01-02 11:52 ?89次閱讀
    Li3MX6全<b class='flag-5'>固態</b>鋰離子電池固體<b class='flag-5'>電解質</b>材料

    一種薄型層狀固態電解質的設計策略

    通量、足夠的機械強度以及與電極的粘附性接觸等性質。目前,集無機和有機成分優點于體的復合固態電解質(CSE)有望實現均勻、快速的鋰離子通量,但如何打破機械強度和粘附力之間的權衡仍然是
    的頭像 發表于 12-31 11:21 ?117次閱讀
    <b class='flag-5'>一種</b>薄型層狀<b class='flag-5'>固態</b><b class='flag-5'>電解質</b>的設計策略

    一種創新的超薄固體聚合物電解質

    傳統液態電解質在鋰離子電池中的應用,盡管廣泛,但在極端環境條件下可能不可避免地面臨泄漏、燃燒乃至爆炸的風險,這些安全隱患顯著制約了其更為廣泛的部署。
    的頭像 發表于 11-01 10:31 ?489次閱讀
    <b class='flag-5'>一種</b>創新的超薄固體聚合物<b class='flag-5'>電解質</b>

    固態電池中復合鋰陽極上固體電解質界面的調控

    采用固體聚合物電解質(SPE)的固態鋰金屬電池(SSLMB)具有更高的安全性和能量密度,在下代儲能領域具有很大的應用前景。
    的頭像 發表于 10-29 16:53 ?471次閱讀
    <b class='flag-5'>固態</b>電池中<b class='flag-5'>復合</b>鋰陽極上固體<b class='flag-5'>電解質</b>界面的調控

    固態電池的優缺點 固態電池與鋰電池比較

    固態電池是一種使用固態電解質代替傳統液態電解質的電池技術。這種電池技術因其在安全性、能量密度和循環壽命等方面的潛在優勢而受到廣泛關注。以下是
    的頭像 發表于 10-28 09:12 ?1994次閱讀

    無極電容器有電解質嗎,無極電容器電解質怎么測

    無極電容器通常存在電解質電解質在無極電容器中起著重要作用,它可以增加電容器的電容量和穩定性。然而,電解質也可能帶來些問題,如漏電和壽命問題。
    的頭像 發表于 10-01 16:45 ?409次閱讀

    氧化物布局格局覽 氧化物電解質何以撐起全固態

    今年以來,各式各樣的半固態、全固態電池開始愈發頻繁且高調地現身,而背后均有氧化物電解質的身影。
    的頭像 發表于 05-16 17:41 ?1105次閱讀

    鈮酸鋰調控固態電解質電場結構促進鋰離子高效傳輸!

    聚合物基固態電解質得益于其易加工性,最有希望應用于下固態鋰金屬電池。
    的頭像 發表于 05-09 10:37 ?822次閱讀
    鈮酸鋰調控<b class='flag-5'>固態</b><b class='flag-5'>電解質</b>電場結構促進鋰離子高效傳輸!

    固態電池發展對高分子材料產業的影響探究

    固態電池是一種使用固態電解質替代液態電解液和隔膜的新型電池。相比傳統液態電池,
    發表于 04-10 12:41 ?703次閱讀
    <b class='flag-5'>固態</b>電池發展對高分子材料產業的影響探究

    請問聚合物電解質是如何進行離子傳導的呢?

    在目前的聚合物電解質體系中,高分子聚合物在室溫下都有明顯的結晶性,這也是室溫下固態聚合物電解質的電導率遠遠低于液態電解質的原因。
    的頭像 發表于 03-15 14:11 ?1271次閱讀
    請問聚合物<b class='flag-5'>電解質</b>是如何進行離子傳導的呢?

    不同類型的電池的電解質都是什么?

    聚合物,如固態電池,固態陶瓷和熔融鹽(如鈉硫電池)中使用的聚合物。 鉛酸電池 鉛酸電池使用硫酸作為電解質。充電時,隨著正極板上形成氧化鉛(PbO2),酸變得更稠密,然后在完全放電時變成幾乎水。鉛酸電池有溢流和密封
    的頭像 發表于 02-27 17:42 ?1617次閱讀

    新型固體電解質材料可提高電池安全性和能量容量

    利物浦大學的研究人員公布了一種新型固體電解質材料,這種材料能夠以與液體電解質相同的速度傳導鋰離子,這是
    的頭像 發表于 02-19 16:16 ?916次閱讀

    固態電解質離子傳輸機理解析

    固態電解質中離子的遷移通常是通過離子擴散的方式實現的。離子擴散是指離子從個位置移動到另個位置的過程,使得電荷在材料中傳輸。
    發表于 01-19 15:12 ?2863次閱讀
    <b class='flag-5'>固態</b><b class='flag-5'>電解質</b>離子傳輸機理解析

    關于固態電解質的基礎知識

    固態電解質在室溫條件下要求具有良好的離子電導率,目前所采用的簡單有效的方法是元素替換和元素摻雜。
    的頭像 發表于 01-19 14:58 ?1.9w次閱讀
    關于<b class='flag-5'>固態</b><b class='flag-5'>電解質</b>的基礎知識
    主站蜘蛛池模板: 色婷婷欧美| 色老头在线精品视频在线播放| 成年人啪啪网站| av72成人| 夜夜春宵翁熄性放纵30| 亚洲一区二区视频| 国产在播放一区| 亚洲大成色www永久网址| 四虎影视最新网址| 人人做人人爽| 激情五月婷婷小说| 8050午夜一级二级全黄| 手机在线1024| 高清午夜线观看免费| 亚洲三区视频| 亚洲国产欧美日韩一区二区三区| 手机在线黄色| 狼人激情网| 夜夜春夜夜爽| 国产在线视频欧美亚综合| 中文字幕一区二区在线观看| 18男女很黄的视频| 日日噜噜噜噜人人爽亚洲精品| 黄色天天影视| 天天拍夜夜爽| 免费观看高清视频| 在线亚洲欧美性天天影院| 深爱激情五月网| 狠狠的日视频| 天天干天天天天| 免费观看视频| 亚欧色视频在线观看免费| 女性一级全黄生活片在线播放| 波多野结衣在线视频观看| 久久免费久久| 男女交性视频播放视频视频| 特级毛片视频在线| 国产精品美女免费视频大全 | 亚洲wuma| 黄 色 片免费观看| 天天摸天天操天天爽|