隨著機器學習與AI快速發展,摩爾定律卻在逐步放緩,從架構設計上尋求創新就成了當下芯片設計的主流解決方案,尤其是在低功耗的AI加速器芯片上。這些用于邊緣端的AI加速器芯片彌補了傳統傳感器方案計算能力缺乏或算力有限的問題,讓傳感器專注于感知層的提升,而算力上的提升和應用場景上的擴展,則可以放心交給低功耗AI芯片解決。
低功耗芯片也不缺席AI訓練
全新興起的這股邊緣AI熱,自然也對不少傳統半導體廠商產生了沖擊,為此他們也開始發力邊緣AI領域,羅姆正是其中之一。去年,羅姆宣布已經開發出了用于IoT邊緣計算的端側學習AI芯片,其功耗甚至可以做到低至30mW。該芯片集成了羅姆自研的8位CPU tinyMicon MatisseCORE,以及2萬門的AI加速器AxlCORE-ODL。
羅姆端側AI芯片原型架構 / 羅姆
Matisse這一CPU不僅做到了極小的面積,在性能上也要超過尋常的8位CPU,甚至符合ISO 26262、ASIL-D的車規標準。AxlCORE-ODL則選擇了由輸入層、中間層和輸出層來組成簡單的三層神經網絡。
除了極低的功耗,羅姆這顆芯片的最獨特之處在于可以像云端AI芯片一樣,完成訓練任務。傳統的低功耗AI芯片由于算力限制,往往是只能用于簡單的推理任務,而羅姆的AI SoC卻同時支持這兩種工作負載。
不過該芯片畢竟是主打端側低功耗的,無法進行較為復雜的訓練任務,羅姆對其定位主要是用于對端側傳感器和電機的實時故障預測。在無需連接云服務器的前提下,該芯片就可以將未知的輸入數據和模式生成非常規數值輸出,從而預測內置傳感器或電機設備的潛在故障。
終端攝像頭迎來新升級
耐能作為一家專注于邊緣AI SoC芯片開發的廠商,此前已經推出了KL520、KL530與KL720這一系列低功耗的AI芯片,也在去年11月推出了新一代的低功耗終端AI芯片KLM5S3。
從性能和特性來看,耐能的新產品KLM5S3是一款專門面向終端攝像頭市場的低功耗AI芯片。KLM5S3基于ARM Cortex A5并采用28nm工藝設計,NPU算力達到0.5eTOPS@INT8,支持Cafee、Tensorflow/lite、Pytorch等常見框架。
KLM5S3 AI SoC芯片 / 耐能
針對終端攝像頭應用,KLM5S3支持雙路HDR處理、電子防抖和魚眼校正等等,這些特性可以使其廣泛用于安防、記錄儀等場景,甚至可以用于ADAS系統。車規圖像傳感器除了高動態范圍外,另一大要求就是對LED閃爍的抑制,因為行駛過程中各種不同頻率的LED閃爍可能會對圖像輸出造成干擾。
耐能的KLM5S3AI芯片在搭配車規級攝像頭時,可以在NPU進行計算和輸出紅綠燈和其他交通標志的識別結果,從而降低駕駛風險。
小結
從這幾年推出的低功耗AI加速器來看,采用模擬和ASIC這兩種實現方式的芯片居多,加速對象以CNN居多,其次是DNN和RNN。因為CNN主要用于圖像識別這樣簡單的視覺AI任務,與視覺傳感器更為契合。而DNN和RNN之類的神經網絡加速更多用于一些語音、文本處理任務。
至于負載類型,100W以下功耗的AI芯片主要還是單獨用于推理,訓練任務絕大多數還是交給大功率的AI芯片在云端完成。這并不是說傳感器這樣的邊緣硬件不需要訓練,而是現階段的簡單模型已經可以解決這些傳感器的大部分需求,但隨著未來數字孿生等應用對傳感器性能的要求進一步提高,低功耗AI芯片勢必會成為最有效的輔助硬件。
低功耗芯片也不缺席AI訓練
全新興起的這股邊緣AI熱,自然也對不少傳統半導體廠商產生了沖擊,為此他們也開始發力邊緣AI領域,羅姆正是其中之一。去年,羅姆宣布已經開發出了用于IoT邊緣計算的端側學習AI芯片,其功耗甚至可以做到低至30mW。該芯片集成了羅姆自研的8位CPU tinyMicon MatisseCORE,以及2萬門的AI加速器AxlCORE-ODL。
羅姆端側AI芯片原型架構 / 羅姆
除了極低的功耗,羅姆這顆芯片的最獨特之處在于可以像云端AI芯片一樣,完成訓練任務。傳統的低功耗AI芯片由于算力限制,往往是只能用于簡單的推理任務,而羅姆的AI SoC卻同時支持這兩種工作負載。
不過該芯片畢竟是主打端側低功耗的,無法進行較為復雜的訓練任務,羅姆對其定位主要是用于對端側傳感器和電機的實時故障預測。在無需連接云服務器的前提下,該芯片就可以將未知的輸入數據和模式生成非常規數值輸出,從而預測內置傳感器或電機設備的潛在故障。
終端攝像頭迎來新升級
耐能作為一家專注于邊緣AI SoC芯片開發的廠商,此前已經推出了KL520、KL530與KL720這一系列低功耗的AI芯片,也在去年11月推出了新一代的低功耗終端AI芯片KLM5S3。
從性能和特性來看,耐能的新產品KLM5S3是一款專門面向終端攝像頭市場的低功耗AI芯片。KLM5S3基于ARM Cortex A5并采用28nm工藝設計,NPU算力達到0.5eTOPS@INT8,支持Cafee、Tensorflow/lite、Pytorch等常見框架。
KLM5S3 AI SoC芯片 / 耐能
針對終端攝像頭應用,KLM5S3支持雙路HDR處理、電子防抖和魚眼校正等等,這些特性可以使其廣泛用于安防、記錄儀等場景,甚至可以用于ADAS系統。車規圖像傳感器除了高動態范圍外,另一大要求就是對LED閃爍的抑制,因為行駛過程中各種不同頻率的LED閃爍可能會對圖像輸出造成干擾。
耐能的KLM5S3AI芯片在搭配車規級攝像頭時,可以在NPU進行計算和輸出紅綠燈和其他交通標志的識別結果,從而降低駕駛風險。
小結
從這幾年推出的低功耗AI加速器來看,采用模擬和ASIC這兩種實現方式的芯片居多,加速對象以CNN居多,其次是DNN和RNN。因為CNN主要用于圖像識別這樣簡單的視覺AI任務,與視覺傳感器更為契合。而DNN和RNN之類的神經網絡加速更多用于一些語音、文本處理任務。
至于負載類型,100W以下功耗的AI芯片主要還是單獨用于推理,訓練任務絕大多數還是交給大功率的AI芯片在云端完成。這并不是說傳感器這樣的邊緣硬件不需要訓練,而是現階段的簡單模型已經可以解決這些傳感器的大部分需求,但隨著未來數字孿生等應用對傳感器性能的要求進一步提高,低功耗AI芯片勢必會成為最有效的輔助硬件。
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。
舉報投訴
-
傳感器
+關注
關注
2552文章
51282瀏覽量
755080 -
AI芯片
+關注
關注
17文章
1898瀏覽量
35121
發布評論請先 登錄
相關推薦
低功耗8位單片機:技術特性與應用前景!
較高要求。低功耗8位單片機憑借其低功耗特性,能夠在保證設備功能的前提下,顯著延長電池壽命,提升用戶體驗。
3. 安防監控
在安防監控領域,低功耗8位單片機被廣泛應用于傳感器網絡中,用
發表于 09-26 14:09
LMP90100和LMP9009x傳感器AFE系統:多通道低功耗24位傳感器AFE數據表
電子發燒友網站提供《LMP90100和LMP9009x傳感器AFE系統:多通道低功耗24位傳感器AFE數據表.pdf》資料免費下載
發表于 07-26 09:44
?0次下載
2.4GHz芯片SI24R03無線網絡傳感器方案
隨著科技的不斷進步,智能環境監測已成為現代社會發展的必然趨勢。為了滿足不同場景下對環境參數的實時監測需求,我們推出了適用于無線網絡傳感器方案的2.4GHz芯片,旨在為用戶打造高效、智能的環境監測
發表于 03-18 01:47
NanoEdge AI的技術原理、應用場景及優勢
NanoEdge AI 是一種基于邊緣計算的人工智能技術,旨在將人工智能算法應用于物聯網(IoT)設備和傳感器。這種技術的核心思想是將數據處理和分析從云端轉移到設備本身,從而減少數據傳
發表于 03-12 08:09
評論