在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

降低碳化硅牽引逆變器的功率損耗和散熱

eeDesigner ? 來源:物聯網評論 ? 作者:物聯網評論 ? 2023-02-27 16:12 ? 次閱讀

隨著電動汽車 (EV) 制造商之間在開發成本更低、行駛里程更長的車型方面的競爭日益激烈,電力系統工程師面臨著減少功率損耗和提高牽引逆變器系統效率的壓力,這可以提高行駛里程并提供競爭優勢。效率與較低的功率損耗有關,這會影響熱性能,進而影響系統重量、尺寸和成本。隨著具有更高功率水平的逆變器的開發,減少功率損耗的需求將繼續存在,特別是隨著每輛車電機數量的增加以及卡車向純電動汽車的遷移。

牽引逆變器傳統上使用絕緣柵雙極晶體管IGBT)。但隨著半導體技術的進步,碳化硅 (SiC) 金屬氧化物半導體場效應晶體管 (MOSFET) 能夠以比 IGBT 更高的頻率進行開關,通過降低電阻和開關損耗來提高效率,同時提高功率和電流密度。在電動汽車牽引逆變器中驅動 SiC MOSFET,尤其是在功率水平 >100 kW 和 800V 總線下,需要具有可靠隔離技術、高驅動強度以及故障監控和保護功能的隔離式柵極驅動器。

牽引逆變器系統中的隔離式柵極驅動器

圖1所示的隔離式柵極驅動器集成電路IC)是牽引逆變器供電解決方案的組成部分。柵極驅動器提供低到高壓(輸入到輸出)電流隔離,驅動基于 SiC 或 IGBT 的三相電機半橋的高側和低側功率級,并能夠監控和保護各種故障情況。

poYBAGP8ZdOAT9sNAAFyinfPRMI931.jpg

圖1:電動汽車牽引逆變器框圖

碳化硅 MOSFET 米勒平臺和高強度柵極驅動器的優勢

特別是對于SiC MOSFET,柵極驅動器IC必須將開關和傳導損耗(包括導通和關斷能量)降至最低。MOSFET數據手冊包括柵極電荷特性,在該曲線上,您會發現一個平坦的水平部分,稱為米勒平臺,如圖2所示。MOSFET在導通和關斷狀態之間花費的時間越長,損失的功率就越多。

當碳化硅MOSFET開關時,柵源電壓(V一般事務人員) 通過門到源閾值 (V總金),鉗位在米勒平臺電壓(VPLT),并且停留在那里,因為電荷和電容是固定的。讓 MOSFET 開關需要增加或消除足夠的柵極電荷。隔離式柵極驅動器必須以高電流驅動MOSFET柵極,以便增加或消除柵極電荷,以減少功率損耗。公式1計算隔離式柵極驅動器將增加或消除所需的SiC MOSFET電荷,表明MOSFET柵極電流與柵極電荷成正比:

QGATE = IGATE × tSW (1)

where IGATE is the isolated gate-driver IC current and tSW is the turnon time of the MOSFET.

對于 ≥150kW 牽引逆變器應用,隔離式柵極驅動器應具有 >10 A 的驅動強度,以便以高壓擺率將 SiC FET 切換通過米勒平臺,并利用更高的開關頻率。碳化硅場效應晶體管具有較低的反向恢復電荷(QRR)和更穩定的溫度導通電阻(RDS(開啟)),可實現更高的開關速度。MOSFET在米勒高原停留的時間越短,功率損耗和自發熱就越低。

TI 的 UCC5870-Q1 和 UCC5871-Q1 是高電流、符合 TI 功能安全標準的 30A 柵極驅動器,具有基本或增強隔離和串行外設接口數字總線,用于與微控制器進行故障通信。圖 3 比較了 UCC5870-Q1 和競爭柵極驅動器之間的 SiC MOSFET 導通。UCC5870-Q1 柵極驅動器的峰值為 39 A,并通過米勒平臺保持 30 A 的電流,從而實現更快的導通,這是首選結果。通過比較藍色V,更快的開啟速度也很明顯。門兩個驅動器之間的波形斜坡。在 10 V 的米勒平臺電壓下,UCC5870-Q1 的柵極驅動器電流為 30 A,而競爭器件的柵極驅動器電流為 8 A。

pYYBAGP8ZdaAViwaAAGBXoF0oO4274.jpg

圖 3:比較 TI 的隔離式柵極驅動器與競爭器件打開 SiC FET 時的比較

隔離式柵極驅動器的功率損耗貢獻

柵極驅動器-米勒平臺比較還與柵極驅動器中的開關損耗有關,如圖4所示。在此比較中,驅動器開關損耗差高達0.6 W。這些損耗會導致逆變器的總功率損耗,并加強對大電流柵極驅動器的需求。

pYYBAGP8ZsmAHW_2AAF-49fuoto752.jpg

圖 4:柵極驅動器開關損耗與開關頻率的關系

散熱

功率損耗會導致溫度升高,由于需要散熱器或更厚的印刷電路板 (PCB) 銅層,可能會使熱管理復雜化。高驅動強度有助于降低柵極驅動器的外殼溫度,從而減少對更昂貴的散熱器或額外的PCB接地層的需求,以降低柵極驅動器的IC溫度。在圖 5 所示的熱圖像中,UCC5870-Q1 的運行溫度降低了 15°C,因為它具有較低的開關損耗和通過米勒平臺的較高驅動電流。

poYBAGP8ZtyAZP9dAAGCi0nggzs546.jpg

圖 5:UCC5870-Q1 的散熱與驅動 SiC FET 的競爭柵極驅動器的比較

結論

隨著電動汽車牽引逆變器的功率增加到 150 kW 以上,通過米勒平臺選擇具有最大電流強度的隔離式柵極驅動器可以降低 SiC MOSFET 功率損耗,實現更快的開關頻率,從而提高效率,從而改善新的電動汽車型號的驅動范圍。符合 TI 功能安全標準的 UCC5870-Q1 和 UCC5871-Q1 30-A 柵極驅動器附帶大量設計支持工具,可幫助實現。

審核編輯黃宇

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 電動汽車
    +關注

    關注

    156

    文章

    12087

    瀏覽量

    231250
  • MOSFET
    +關注

    關注

    147

    文章

    7164

    瀏覽量

    213276
  • 逆變器
    +關注

    關注

    283

    文章

    4722

    瀏覽量

    206811
  • 碳化硅
    +關注

    關注

    25

    文章

    2762

    瀏覽量

    49053
  • 功率損耗
    +關注

    關注

    0

    文章

    34

    瀏覽量

    11242
收藏 人收藏

    評論

    相關推薦

    碳化硅(SiC)肖特基二極管的特點

    )碳化硅器件為減少功率器件體積和降低電路損耗作出了重要貢獻。  碳化硅的不足是:  碳化硅圓片的
    發表于 01-11 13:42

    碳化硅深層的特性

    碳化硅的顏色,純凈者無色透明,含雜質(碳、硅等)時呈藍、天藍、深藍,淺綠等色,少數呈黃、黑等色。加溫至700℃時不褪色。金剛光澤。比重,具極高的折射率, 和高的雙折射,在紫外光下發黃、橙黃色光,無
    發表于 07-04 04:20

    【羅姆BD7682FJ-EVK-402試用體驗連載】基于碳化硅功率器件的永磁同步電機先進驅動技術研究

    ,利用SiC MOSFET來作為永磁同步電機控制系統中的功率器件,可以降低驅動器損耗,提高開關頻率,降低電流諧波和轉矩脈動。本項目中三相逆變器
    發表于 04-21 16:04

    碳化硅基板——三代半導體的領軍者

    92%的開關損耗,還能讓設備的冷卻機構進一步簡化,設備體積小型化,大大減少散熱用金屬材料的消耗。半導體LED照明領域碳化硅(SiC)在大功率LED方面具有非常大的優勢,采用
    發表于 01-12 11:48

    碳化硅器件是如何組成逆變器的?

    進一步了解碳化硅器件是如何組成逆變器的。
    發表于 03-16 07:22

    電動汽車的全新碳化硅功率模塊

    面向電動汽車的全新碳化硅功率模塊 碳化硅在電動汽車應用中代表著更高的效率、更高的功率密度和更優的性能,特別是在800 V 電池系統和大電池容量中,它可提高
    發表于 03-27 19:40

    降低碳化硅牽引逆變器功率損耗散熱

    IGBT 的三相電機半橋的高側和低側功率級,并能夠監控和保護各種故障情況。圖1:電動汽車牽引逆變器框圖碳化硅 MOSFET 米勒平臺和高強度柵極驅動器的優勢特別是對于SiC MOSF
    發表于 11-02 12:02

    功率模塊中的完整碳化硅性能怎么樣?

    硅 IGBT 和二極管與多電平配置等新拓撲相結合,可提供最佳的性價比。混合碳化硅結合了高速硅IGBT和碳化硅肖特基續流二極管,也是一個不錯的選擇,與純硅解決方案相比,可將功率損耗
    發表于 02-20 16:29

    歸納碳化硅功率器件封裝的關鍵技術

    ,導通電阻更低;碳化硅具有高電子飽和速度的特性,使器件可工作在更高的開關頻率;同時,碳化硅材料更高的熱導率也有助于提升系統的整體功率密度。碳化硅器件的高頻、高壓、耐高溫、開關速度快、
    發表于 02-22 16:06

    應用于新能源汽車的碳化硅半橋MOSFET模塊

      采用溝槽型、低導通電阻碳化硅MOSFET芯片的半橋功率模塊系列  產品型號  BMF600R12MCC4  BMF400R12MCC4  汽車級全碳化硅半橋MOSFET模塊Pcore2
    發表于 02-27 11:55

    淺談硅IGBT與碳化硅MOSFET驅動的區別

    MOSFET更好的在系統中應用,需要給碳化硅MOSFET匹配合適的驅動。  接下來介紹基本半導體碳化硅MOSFET及驅動產品  基本半導體自主研發的碳化硅 MOSFET 具有導通電阻低,開關
    發表于 02-27 16:03

    碳化硅肖特基二極管的基本特征分析

    的小電流,因此碳化硅肖特基二極管的開關損耗比硅快速恢復二極管更低。使用碳化硅肖特基二極管可以減少損耗,能快速穩定實現器件的正反切換,提高產品的效率和
    發表于 02-28 16:34

    功率密度碳化硅MOSFET軟開關三相逆變器損耗分析

    逆變器功率密度,探討了采用軟開關技術的碳化硅 MOSFET 逆變器。 比較了不同開關頻率下的零電壓開關三相逆變器及硬開關三相
    發表于 10-08 08:00 ?29次下載
    高<b class='flag-5'>功率</b>密度<b class='flag-5'>碳化硅</b>MOSFET軟開關三相<b class='flag-5'>逆變器</b><b class='flag-5'>損耗</b>分析

    學技術 | 碳化硅 SIC MOSFET 如何降低功率損耗

    SICMOSFET作為第三代半導體器件,以其卓越的高頻高壓高結溫低阻特性,已經越來越多的應用于功率變換電路。那么,如何用最有效的方式驅動碳化硅MOSFET,發揮SICMOSFET的優勢,盡可能降低
    的頭像 發表于 11-30 15:28 ?4061次閱讀
    學技術 | <b class='flag-5'>碳化硅</b> SIC MOSFET 如何<b class='flag-5'>降低</b><b class='flag-5'>功率</b><b class='flag-5'>損耗</b>

    碳化硅模塊使用燒結銀雙面散熱DSC封裝的優勢與實現方法

    碳化硅模塊使用燒結銀雙面散熱DSC封裝的優勢與實現方法 新能源車的大多數最先進 (SOTA)?電動汽車的牽引逆變器體積功率密度范圍從基于 S
    的頭像 發表于 02-19 14:51 ?832次閱讀
    <b class='flag-5'>碳化硅</b>模塊使用燒結銀雙面<b class='flag-5'>散熱</b>DSC封裝的優勢與實現方法
    主站蜘蛛池模板: 在线观看视频免费| 午夜性爽视频男人的天堂在线| 亚洲免费在线观看| 天天爱夜夜操| 又粗又大又猛又爽免费视频| 四虎影院永久| aaaa大片| 中年艳妇乱小玩| 热久久这里只有精品| 天天做天天爰夜夜爽| 亚洲一区二区三区免费视频| 三级理论手机在线观看视频| 夜夜摸视频网| 日本毛片在线观看| 可以直接看的黄址| 国产人人看| 五月婷亚洲| 午夜影视免费| 狂捣猛撞侍卫攻双性王爷受| 久久久久久久综合色一本 | 久久久精品免费| 一级毛片aaa片免费观看| 国产一级aa大片毛片| 2020天天干| 日本www色视频成人免费网站| 五月天婷婷久久| 国产成人毛片亚洲精品不卡| 狠狠狠色丁香婷婷综合久久88 | 日本黄色绿像| 亚洲第一成年网| 7m视频精品凹凸在线播放| 亚洲欧美日本视频| 黄色三级视频在线观看| 在线观看亚洲专3333| 日本高清视频在线www色| 末满18以下勿进色禁网站| 性生交大片免费一级| 天天射天天干天天色| 一级 黄 色 片免费| 香蕉视频国产在线观看| 99久久99久久|