在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

影響電源轉換器在高頻條件EMI特性的輻射發射

星星科技指導員 ? 來源:TI ? 作者:TI ? 2023-03-29 09:26 ? 次閱讀

輻射電磁干擾 (EMI) 是一種在特定環境中動態出現的問題,與電源轉換器內部的寄生效應、電路布局和元器件排布及其在運行時所處的整體系統相關。因此,從設計工程師的角度出發,輻射 EMI 的問題通常更具挑戰性,復雜度更高,在系統主板使用多個 DC/DC 功率級時尤為如此。了解輻射 EMI 的基本機制以及測量要求、頻率范圍和相應限制條件至關重要。本文重點介紹這些方面的內容,展示輻射 EMI 測量裝置以及兩個 DC/DC 降壓轉換器的結果。

近場耦合

圖 1 概略介紹了噪聲源與受干擾電路之間基本 EMI 耦合模式特別是電感或 H 場耦合需要 di/dt 較高的時變電流源和兩條磁耦合回路(或帶有返回路徑的平行導線)。另一方面,電容或 E 場耦合需要 dv/dt 較高的時變電壓源和兩塊緊鄰的金屬板。這兩種機制均屬于近場耦合,其中的噪聲源與受干擾電路非常接近,可使用近場嗅探器進行測量。

poYBAGQjk7KAPMgcAAJkAsnBH7w218.png

圖 1:EMI 耦合模式

例如,現代電源開關,特別是氮化鎵 (GaN) 和碳化硅 (SiC) 基晶體管,其輸出電容 COSS 較低,柵極電荷 QG 較少,能夠以極高的 dv/dt 和 di/dt 轉換率進行開關。相鄰電路發生 H 場和 E 場耦合以及串擾的可能性很高。然而,隨著互感或電容減小,耦合結構的間距增大,近場耦合顯著減弱。

遠場耦合

典型的電磁 (EM) 波以 E 場和 H 場組合的形式傳播。輻射天線源附近的場結構為復雜的三維模式。從輻射源進一步分析,遠場區域中的 EM 波由彼此正交并且與傳播方向正交的 E 場和 H 場分量組成。圖 2 展示了這種平面波,它代表輻射 EMI 的主要基準,受到各種輻射標準的約束。

pYYBAGQjk7OANFCiAAIEAwjdInY523.png

圖 2:電磁平面波傳播

圖 3 所示的波阻抗等于電場強度與磁場強度之比。遠場區域中的 E 和 H 分量同相,因此遠場阻抗呈阻性,具體值可通過麥克斯韋方程(如方程 1 所示)的平面波解決方案計算:

poYBAGQjk7OAKQurAAClmZGCHC0122.png

如果 λ 是波長,F 是所需頻率,方程 2 通常表示近場和遠場區域之間的邊界:

pYYBAGQjk7SAEzloAAA_zUCUqjc286.png

然而,該邊界不是精確的標準,僅用于指示一般性過渡區域(圖 3 中描述為 l/16 至 3l),其中的場從復雜的分布形態演變為平面波。

pYYBAGQjk7WAb8HtAAVqF1RgZ-s517.png

圖 3:麥克斯韋定律中近場和遠場區域的波阻抗

鑒于多數天線設計用于檢測和響應電場,輻射的電磁波通常稱為垂直或水平極化,具體取決于電場方向。測量 E 場天線一般應與傳播的 E 場在同一平面中定向,從而檢測最大場強。因此,輻射 EMI 測試標準通常介紹接收天線以垂直和水平極化方式安裝時的測量。

工業和多媒體設備中的輻射 EMI

表 1 列出了聯邦通信委員會 (FCC) 第 15 部分 B 子節針對無意輻射體規定的 A 類和 B 類輻射發射限值。此外,本規范第 15.109(g) 條允許在使用美國國家標準協會 (ANSI) C63.4-2014 規定的測量方法時,使用國際無線電干擾特別委員會 (CISPR) 22 規定的輻射發射限值(如表 2 所述)。表 1 和表 2 中規定的限值均針對低于 1GHz 的頻率,使用 CISPR 準峰值 (QP) 檢測器功能,分辨率帶寬 (RBW) 為 120kHz。表 3 和表 4 規定的限值針對 1GHz 以上的頻率,此時使用峰值 (PK) 和平均 (AVG) 檢測器以及分辨率帶寬為 1MHz 的接收器

對于指定的測量距離,B 類民用或家用應用限制通常比 A 類商用或工業應用限制更嚴格,通常高出 6dB 至 10dB。另請注意,表 1 和表 2 還包括一個按照 15.31(f)(1) 使用的 20 dB/dec 的反向線性距離 (1/d) 比例系數,針對 3m 和 10m 天線測量距離對應的限值進行歸一化處理,從而確定合規性。例如,如果將天線放置在 3 米而非 10 米的位置,從而保持在測試設備邊界內,則限制幅值調整約 10.5dB。

表 1:按照 47 CFR 15.109(a) 和 (b) 標準規定的 30MHz 到 1GHz 范圍的輻射發射場強 QP 限值

poYBAGQjk7aAUCa4AAK3soj42VM206.png

表 2:按照 47 CFR 15.109(g)/CISPR 22/32 標準規定的 30MHz 到 1GHz 范圍的輻射發射場強 QP 限值

pYYBAGQjk7aAdlMsAAGpDClr0PM000.png

表 3:按照 47 CFR 15.109(a) 和 (b) 標準規定的 1GHz 到 6GHz 范圍的輻射發射場強限值

poYBAGQjk7eAO2S9AADUKtXEUag870.png

表 4:按照 47 CFR 15.109(g)/CISPR 22/32 標準規定的 1GHz 到 6GHz 范圍的輻射發射場強限值

pYYBAGQjk7iAa2njAADrg0NgWY8712.png

圖 4 展示了當天線距離為 3m 時,A 類和 B 類相關限值的圖象。符合 FCC 的設計包括采用 Bluetooth? 低能耗技術的氣體傳感器實施方案,其由電池供電,可從德州儀器 (TI) 購買。用戶可下載有關此設計的FCCA類合規性報告,其中列出輻射發射測試數據和圖象,以便查閱相關信息

poYBAGQjk7iARcS3AAKxJBusOX8906.png

圖 4:FCC 第 15 部分和 CISPR 22 的 A 類和 B 類輻射限值(對于低于和高于 1GHz 這兩種條件,分別使用 QP 和 AVG 檢測器)

如圖 5 所示,輻射 EMI 測試程序包括將待測設備 (EUT) 和支持設備放置在半消聲室 (SAC) 或開闊試驗場 (OATS) 內的非導電轉盤(高出基準接地平面 0.8m)之上,遵循 CISPR 16-1 中所定義。EUT 設置在與安裝于天線塔上的接收天線相距 3m 的位置。

使用經校準的寬帶天線(雙錐形天線和對數周期天線組合,或者 Bilog 天線)的 PK 檢測器預掃描功能,沿水平和垂直兩種天線極化方向對 30MHz 到 1GHz 的輻射發射進行檢測。這種探究性測試可以確定所有重要發射的頻率。執行該測試后,使用 QP 檢測器檢查相關的故障點,記錄最終合規測量值。

在測試期間,EMI 接收器的 RBW 設置為 120kHz。配置天線的水平和垂直極化方向(將其相對于接地平面旋轉 90°),并將高度調整為高出接地平面 1m 到 4m,以便在考慮地面反射時,將每個測試頻率對應的場強讀數最大化。在測量期間,可將轉盤上的 EUT 在 0 到 360° 之間旋轉,使天線與 EUT 之間的方位角發生變化,以便根據 EUT 的方位獲得最大場強讀數。天線位于 EUT 的遠場區,對應于 3m 天線距離,頻率為 15.9MHz。

pYYBAGQjk7mATfiaAAGr9cndUyU295.png

圖 5:FCC 第 15 部分和 CISPR 22/32 對應的輻射發射測量裝置

可以使用喇叭天線針對 1GHz 以上的頻率執行 PK 檢測器預掃描,然后在接近限制時使用 AVG 檢測器。EMI 接收器的 RBW 設置為 1MHz。天線方向明確,因此無需執行高度掃描,接地平面和暗室壁的反射也很難造成干擾。然而,EUT 在這些頻率下的輻射發射方向性更強,因此轉盤再次旋轉 360 度,確定天線極化方向以獲得最大響應。根據表 5,測量頻率的上限范圍隨 EUT 的最高內部頻率發生變化。

表5:輻射發射最大測量頻率(基于 EUT 內部時鐘源的最高頻率)

poYBAGQjk7qAXvMPAAHjsAXTCZo632.png

輻射發射測試以每米若干分貝/微伏 (dB/mV) 為單位校準電場強度。天線因子 (AF) 是天線平面產生的電場 (mV/m) 與頻譜分析儀 (SA) 或掃描 EMI 接收器測得的電壓 (dB/mV) 之比。一般而言,校正的發射電平由方程 3 推導得出,推導時將 AF、電纜損耗 (CL)、衰減器和 RF 限制器損耗因子 (AL) 以及放大器預增益 (AG) 考慮在內。

pYYBAGQjk7uAdvdRAACOZnjbFC4245.png

圖 6 所示為 LMR16030 60V/3A 降壓轉換器輻射發射測試裝置的照片和結果。測量條件為 24V 輸入、5V 輸出、3A 負載電流和 400kHz 開關頻率。

poYBAGQjk7yAP5ydAA63qQpluAY658.png

圖 6:CISPR 22 輻射 EMI 測試:測試裝置照片 (a);水平和垂直極化天線的輻射 EMI 結果 (b)

汽車系統中的輻射 EMI

盡管屏蔽電纜可以削弱汽車系統中的干擾效應,但 EMI 可通過串擾“有效地”在易受影響的電路中耦合。在場線耦合效應的作用下,對于體積相對較小但電源分布密集、信號通過電纜束的車輛,輻射排放還可能導致信號互連出現輻射抗擾問題。基于上述原因,評估 EMI 性能便成為汽車工程師在設計和測試電動汽車時重點關注的問題。

UNECE 10 號法規和 CISPR 25

CISPR 12 和 CISPR 25 均為國際標準,提供無線電干擾測量的限值和程序,分別為汽車的車載和非車載接收器提供保護。CISPR 25 特別適用于汽車級別,也適用于所有車用電子組件 (ESA)。與其他標準相比,CISPR 25 通常作為汽車制造商及其供應商定義產品規格的基礎,但不是評定合規性和遵從情況的基準。自歐盟電動汽車 EMC 指令廢止后,聯合國歐洲經濟委員會 (UNECE) 第 10 條規定中出現這一差別。

CISPR 25 針對車輛元器件排放測量定義了數種方法和限值類別,兼顧寬帶 (BB) 源和窄帶 (NB) 源。圖 7 說明了針對元器件/模塊使用 PK 和 AVG 檢測器的 5 類限值。測量對象為車輛中工作在廣播和移動服務頻帶中的接收器。最低測量頻率涉及 150kHz 至 300kHz 的歐洲長波 (LW) 廣播頻帶,最高頻率為 2.5GHz(考慮藍牙傳輸)。

poYBAGQjmoOACfp4AACljSyRmeY485.png

圖 7:使用內襯吸收器的屏蔽外殼 (ALSE) 方法,通過峰值和平均值檢測器(線性頻率標度)測得的元器件/模塊的 CISPR 25 5 類輻射限值

對于 30MHz 以下和以上兩種條件下的檢測,掃描接收器的 RBW 分別為 9kHz 和 120kHz。例外情況是 GPS L1 民用(1.567GHz 至 1.583GHz)和全球導航衛星系統 (GLONASS) L1(1.591GHz 至 1.613GHz)頻段。在這兩種頻段下,需要 9kHz 的 RBW 和 5kHz 的最大步長,從而在僅使用 AVG 檢測器的情況下檢測出相應的 NB 發射。

CISPR 25 的天線系統

使用額定輸出阻抗為 50Ω 的線性極化電場天線進行測量。表 6 和圖 8 顯示了 CISPR 25 建議使用的天線,可提升不同實驗室所提供結果的一致性。

表 6:根據 CISPR 25,建議使用電場天線;雙錐形天線和對數周期天線存在疊加頻率,而 Bilog 天線覆蓋了二種天線各自的頻率范圍。

poYBAGQjk76AYRQeAAIX9SzyOE0998.png

pYYBAGQjk7-ABOkaAAFz2HMYm6E781.png

圖 8:符合 CISPR 25 規范的測量天線

對于低頻測量,使用帶地網的無源/有源拉桿單極天線。雙錐形和對數周期偶極子陣列 (LPDA) 天線通常分別覆蓋 30MHz 至 200MHz 和 200MHz 至 1GHz 的頻率范圍。最后,雙脊喇叭天線 (DRHA) 通常用于 1GHz 至 2.5GHz。寬帶 Bilog 天線的外型比雙錐形或對數周期天線更大,有時用于覆蓋 30MHz 至 1GHz 的頻率范圍。

使用 ALSE 進行輻射 EMI 測試

圖 9、10 和 11 所示為使用 CISPR 25 ALSE 方法(也稱天線方法)的典型裝置,針對表 6 中規定的頻率范圍進行輻射發射測量。

EUT 和電纜束放置在高出接地平面 50mm 的非導體介電材料(相對介電常數 εr 較低,不高于 1.4)之上。與接地平面前部平行的線束長度為 1.5m,EUT 與負載模擬器之間測試線束的總長度不超過 2m。測試線束的長段平行于接地平面朝向天線的邊緣,與邊緣相距 100mm。接地平面的要求是最小寬度和長度分別為 1m 和 2m,或者在整個設備下方加上 200mm,取其中的較大值。根據方程式 2 給定的近遠場轉換以及 1m 天線距離,在 EUT 的近場區域進行測量時,頻率必須低于 48MHz。

poYBAGQjk7-AUhvyAAOSv8wwbzw846.png

圖 9:單極拉桿天線(150kHz 至 30MHz)的 CISPR 25 輻射發射測量裝置

pYYBAGQjk8CAYlK0AAPvx1XMDG8023.png

圖 10:雙錐形天線(30MHz 至 300MHz)或對數周期天線(200MHz 至 1GHz)的 CISPR 25 輻射發射測量裝置

poYBAGQjk8GABKbbAAPS7FzEdLQ493.png

圖 11:喇叭天線(1GHz 以上)的 CISPR 25 輻射發射測量裝置

喇叭天線與 EUT 對齊,其他天線則放置在線束中點。執行所有測量時,天線距離均為 1 米。頻率范圍為 150kHz 至 30MHz 的測量僅針對垂直天線極化執行。頻率范圍為 30MHz 至 2.5GHz 的掃描同時針對水平極化和垂直極化執行。

如前文所述,EMI 接收器與 AF 結合所檢測到的天線電壓可在天線位置產生電場強度。請注意,獨立的 AF 可用于水平和垂直極化,因此可以使用相應的 AF 值對每個極化方向進行測量。

輻射 EMI 預合規測試及結果

圖 12 為 LM53635-Q1 汽車級同步降壓轉換器 [9] 輻射發射測試裝置的照片。EUT 由汽車電池供電,正負供電線路均連接線路阻抗穩定網絡 (LISN)。3.5A 阻性負載下的輸出為 3.3V。開關頻率為 2.1MHz,高于許多汽車系統所需的 AM 頻帶,同時啟用了擴頻調頻 (SSFM)。圖 13 至 16 顯示了使用各種測試天線通過 CISPR 25 5 類限值要求的測量結果。

pYYBAGQjk8KAAiRUAA2hs3LMxjY526.png

圖 12:CISPR 25 預合規測量裝置照片

poYBAGQjk8OAMyrdAAG7UxzcFUc057.png

圖 13:輻射發射結果:150kHz 至 30MHz,拉桿天線,垂直極化

pYYBAGQjk8SAbc_rAAHRVIVHq2M813.png

圖 14:輻射發射結果:30MHz 至 300MHz,雙錐形天線,水平和垂直極化

pYYBAGQjk8WAe2qGAAHE1hNvnvA762.png

圖 15:輻射發射結果:200MHz 至 1GHz,對數周期天線,水平和垂直極化

poYBAGQjk8WASVmLAAENPHsMIaA714.png

圖 16:輻射發射結果:1GHz 至 2.5GHz,喇叭天線,水平極化

結論

輻射發射影響電源轉換器在高頻條件的 EMI 特性 [10]。輻射測試的上限頻率擴展到 1GHz 甚至更高(取決于規范),遠高于傳導發射。雖然不像傳導發射測試那樣簡單直接,但輻射發射測量對于合規測試不可或缺,很容易成為產品開發過程中的瓶頸。

對于汽車應用,由于長度原因,電纜束在低頻條件下主要采用輻射結構。測得的輻射發射曲線主要來源于所連接電纜中的共模電流,由印刷電路板 (PCB) 與電纜之間的近場電耦合驅動。我將在本文的后續章節探討輻射 EMI 減弱技術。

審核編輯:郭婷

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 電源
    +關注

    關注

    184

    文章

    17732

    瀏覽量

    250442
  • 轉換器
    +關注

    關注

    27

    文章

    8709

    瀏覽量

    147278
  • emi
    emi
    +關注

    關注

    53

    文章

    3590

    瀏覽量

    127737
  • 電源轉換器
    +關注

    關注

    4

    文章

    317

    瀏覽量

    34571
收藏 人收藏

    評論

    相關推薦

    EMI/EMC開關轉換器簡化ADAS設計

    各種抗噪標準。汽車環境中,開關穩壓正在取代那些重視低發熱和高效率的區域中的線性穩壓。而且,開關穩壓通常是輸入電源總線上的第一個有源部
    發表于 10-22 16:50

    EMI/EMC開關轉換器簡化ADAS設計

    穩壓正在取代那些重視低發熱和高效率的區域中的線性穩壓。而且,開關穩壓通常是輸入電源總線上的第一個有源部件,因此對整個轉換器電路的
    發表于 10-23 11:47

    EMI/EMC開關轉換器簡化ADAS設計

    汽車環境中,開關穩壓正在取代那些重視低發熱和高效率的區域中的線性穩壓。而且,開關穩壓通常是輸入電源總線上的第一個有源部件,因此對整個轉換器
    發表于 12-03 10:55

    開關電源EMI的來源及降低EMI的方法

    的影響。LMR23630轉換器EMI輻射水平可降低20 dBμV/m以上。圖7.不同類型電源模塊的內部組成。在這兩種情況下,電感均位于I
    發表于 06-03 00:53

    DC/DC 轉換器 EMI 的工程師指南:功率級寄生效應

    DC/DC 轉換器中半導體器件的高頻開關特性是主要的傳導和輻射發射源。本文章系列 [1] 的第 2 部分回顧了 DC/DC
    發表于 11-03 08:00

    消除Buck轉換器中的EMI問題

    輸入電流的不連續特性和實際為轉換器供電的電源線通常都很長的緣故,輸入回路A3所造成的輻射也可能是很可觀的,并且可導致超出規格的傳導輻射
    發表于 08-10 09:34

    深入解析 DC/DC 轉換器的傳導 EMI 特性:噪聲傳播和濾波

    高開關頻率是電源轉換技術發展過程中促進尺寸減小的主要因素。為了符合相關法規,通常需要采用電磁干擾 (EMI) 濾波,而該濾波
    發表于 09-18 07:00

    低壓Buck轉換器工作中的EMI問題進行基礎分析

    來源:搜狐網DCDC電源模塊EMC常規測試失敗占比很大,然而要解決Buck轉換器中的EMI問題是一個很大的挑戰,因為其中含有很多高頻成分。
    發表于 10-22 15:40

    輻射EMI的基本機制以及測量要求和頻率范圍

      這篇系列文章的第 4 部分針對電源轉換器(特別是工業和汽車領域使用的電源轉換器開關時產生的輻射
    發表于 03-08 06:23

    深入解析 DC/DC 轉換器的傳導 EMI 特性:噪聲傳播和濾波

    高開關頻率是電源轉換技術發展過程中促進尺寸減小的主要因素。為了符合相關法規,通常需要采用電磁干擾 (EMI) 濾波,而該濾波
    發表于 06-09 10:18

    輻射發射EMI的影響

    簡介這篇系列文章的第 4 部分針對電源轉換器(特別是工業和汽車領域使用的電源轉換器開關時產生的輻射
    發表于 11-09 07:25

    抑制傳導和輻射電磁干擾 (EMI) 的實用指南和示例

    簡介本系列文章的第 1 部分至第 4 部分詳細介紹了開關電源穩壓引起的傳導發射輻射發射,包括噪聲產生機制、測量要求、頻率范圍、適用的測試
    發表于 11-09 07:28

    《消除Buck轉換器中的EMI問題》

    消除開關模式電源轉換器中的EMI問題
    發表于 09-28 11:44 ?31次下載

    DC/DC轉換器的功率級寄生效應解析

    DC/DC 轉換器中半導體器件的高頻開關特性是主要的傳導和輻射發射源。本文章系列 的第 2 部分回顧了 DC/DC
    發表于 09-14 10:08 ?1897次閱讀
    DC/DC<b class='flag-5'>轉換器</b>的功率級寄生效應解析

    EMI輻射發射

    時產生的輻射排放闡述了一些觀點。 輻射電磁干擾 (EMI) 是一種特定環境中動態出現的問題,與電源
    的頭像 發表于 01-20 11:25 ?2692次閱讀
    <b class='flag-5'>EMI</b> 的<b class='flag-5'>輻射</b><b class='flag-5'>發射</b>
    主站蜘蛛池模板: 亚洲精品久久久久午夜三| 久操中文| 国产大乳喷奶水在线看| 国产三级日本三级日产三级66| 五月天婷婷在线观看| 天天添天天干| 国产码一区二区三区| 国产性videosgratis| 国产精品久久久久久久久免费hd| 二级黄色大片| 亚洲插| 手机看片国产免费永久| 久久国产乱子伦精品免费一| 成人一级网站| 亚洲成网站| 亚洲综合久久综合激情久久| 天天色图片| 欧美色图久久| 国产成年网站v片在线观看| 一级特黄aaa免费| 看片福利| tube 69sex 第一次| 男人的午夜影院| 性欧美videofree丝袜| 欧洲综合网| 成人免费看黄页网址大全| 天天操天天拍| 午夜亚洲视频| 一级片免费在线观看| 欧美午夜视频一区二区| 午夜免费啪啪| 中文字幕网资源站永久资源| 色婷婷激婷婷深爱五月老司机| 性欧美高清| 欧美午夜在线播放| 爱爱的免费视频| 精品视频69v精品视频| 亚洲区免费| 午夜欧美成人久久久久久| 你懂的免费| 伊人网视频|