在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

阻抗匹配基礎知識詳解

QuTG_CloudBrain ? 來源:云腦智庫 ? 2023-04-03 09:25 ? 次閱讀

基本概念

信號傳輸過程中負載阻抗和信源內阻抗之間的特定配合關系。一件器材的輸出阻抗和所連接的負載阻抗之間所應滿足的某種關系,以免接上負載后對器材本身的工作狀態產生明顯的影響。對電子設備互連來說,例如信號源連放大器,前級連后級,只要后一級的輸入阻抗大于前一級的輸出阻抗5-10倍以上,就可認為阻抗匹配良好;對于放大器連接音箱來說,電子管機應選用與其輸出端標稱阻抗相等或接近的音箱,而晶體管放大器則無此限制,可以接任何阻抗的音箱。

匹配條件

①負載阻抗等于信源內阻抗,即它們的模與輻角分別相等,這時在負載阻抗上可以得到無失真的電壓傳輸。

②負載阻抗等于信源內阻抗的共軛值,即它們的模相等而輻角之和為零。這時在負載阻抗上可以得到最大功率。這種匹配條件稱為共軛匹配。如果信源內阻抗和負載阻抗均為純阻性,則兩種匹配條件是等同的。

阻抗匹配是指負載阻抗與激勵源內部阻抗互相適配,得到最大功率輸出的一種工作狀態。對于不同特性的電路,匹配條件是不一樣的。在純電阻電路中,當負載電阻等于激勵源內阻時,則輸出功率為最大,這種工作狀態稱為匹配,否則稱為失配。

當激勵源內阻抗和負載阻抗含有電抗成份時,為使負載得到最大功率,負載阻抗與內阻必須滿足共扼關系,即電阻成份相等,電抗成份絕對值相等而符號相反。這種匹配條件稱為共扼匹配。

阻抗匹配(Impedance matching)是微波電子學里的一部分,主要用于傳輸線上,來達至所有高頻的微波信號皆能傳至負載點的目的,不會有信號反射回來源點,從而提升能源效益。史密夫圖表上。電容或電感與負載串聯起來,即可增加或減少負載的阻抗值,在圖表上的點會沿著代表實數電阻的圓圈走動。如果把電容或電感接地,首先圖表上的點會以圖中心旋轉180度,然后才沿電阻圈走動,再沿中心旋轉180度。重覆以上方法直至電阻值變成1,即可直接把阻抗力變為零完成匹配。

共軛匹配

在信號源給定的情況下,輸出功率取決于負載電阻與信號源內阻之比K,當兩者相等,即K=1時,輸出功率最大。然而阻抗匹配的概念可以推廣到交流電路,當負載阻抗與信號源阻抗共軛時,能夠實現功率的最大傳輸,如果負載阻抗不滿足共軛匹配的條件,就要在負載和信號源之間加一個阻抗變換網絡,將負載阻抗變換為信號源阻抗的共軛,實現阻抗匹配。


匹配分類

大體上,阻抗匹配有兩種,一種是透過改變阻抗力(lumped-circuit matching),另一種則是調整傳輸線的波長(transmission line matching)。

要匹配一組線路,首先把負載點的阻抗值除以傳輸線的特性阻抗值來歸一化,然后把數值劃在史密夫圖表上。

1、改變阻抗力
把電容或電感與負載串聯起來,即可增加或減少負載的阻抗值,在圖表上的點會沿著代表實數電阻的圓圈走動。如果把電容或電感接地,首先圖表上的點會以圖中心旋轉180度,然后才沿電阻圈走動,再沿中心旋轉180度。重復以上方法直至電阻值變成1,即可直接把阻抗力變為零完成匹配。

2、調整傳輸線
由負載點至來源點加長傳輸線,在圖表上的圓點會沿著圖中心以逆時針方向走動,直至走到電阻值為1的圓圈上,即可加電容或電感把阻抗力調整為零,完成匹配。

阻抗匹配則傳輸功率大,對于一個電源來講,單它的內阻等于負載時,輸出功率最大,此時阻抗匹配。最大功率傳輸定理,如果是高頻的話,就是無反射波。對于普通的寬頻放大器,輸出阻抗50Ω,功率傳輸電路中需要考慮阻抗匹配,可是如果信號波長遠遠大于電纜長度,即纜長可以忽略的話,就無須考慮阻抗匹配了。阻抗匹配是指在能量傳輸時,要求負載阻抗要和傳輸線的特征阻抗相等,此時的傳輸不會產生反射,這表明所有能量都被負載吸收了。反之則在傳輸中有能量損失。高速PCB布線時,為了防止信號的反射,要求是線路的阻抗為50歐姆。這是個大約的數字,一般規定同軸電纜基帶50歐姆,頻帶75歐姆,對絞線則為 100歐姆,只是取個整而已,為了匹配方便。

何為阻抗

阻抗是電阻與電抗在向量上的和。高頻電路的阻抗匹配由于高頻功率放大器工作于非線性狀態,所以線性電路和阻抗匹配(即:負載阻抗與電源內阻相等)這一概念不能適用于它。因為在非線性(如:丙類)工作的時候,電子器件的內阻變動劇烈:通流的時候,內阻很小;截止的時候,內阻接近無窮大。因此輸出電阻不是常數。所以所謂匹配的時候內阻等于外阻,也就失去了意義。因此,高頻功率放大的阻抗匹配概念是:在給定的電路條件下,改變負載回路的可調元件,使電子器件送出額定的輸出功率至負載。這就叫做達到了匹配狀態。

怎樣理解阻抗匹配

阻抗匹配是指信號源或者傳輸線跟負載之間的一種合適的搭配方式。阻抗匹配分為低頻和高頻兩種情況討論。

我們先從直流電壓源驅動一個負載入手。由于實際的電壓源,總是有內阻的,我們可以把一個實際電壓源,等效成一個理想的電壓源跟一個電阻r串聯的模型。假設負載電阻為R,電源電動勢為U,內阻為r,那么我們可以計算出流過電阻R的電流為:I=U/(R+r),可以看出,負載電阻R越小,則輸出電流越大。負載R上的電壓為:Uo=IR=U*[1+(r/R)],可以看出,負載電阻R越大,則輸出電壓Uo越高。再來計算一下電阻R消耗的功率為:

P=I*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r)
=U*U*R/[(R-r)*(R-r)+4*R*r]
=U*U/{[(R-r)*(R-r)/R]+4*r}

對于一個給定的信號源,其內阻r是固定的,而負載電阻R則是由我們來選擇的。注意式中[(R-r)*(R-r)/R],當R=r時,[(R-r)*(R-r)/R]可取得最小值0,這時負載電阻R上可獲得最大輸出功率Pmax=U*U/(4*r)。即,當負載電阻跟信號源內阻相等時,負載可獲得最大輸出功率,這就是我們常說的阻抗匹配之一。對于純電阻電路,此結論同樣適用于低頻電路及高頻電路。當交流電路中含有容性或感性阻抗時,結論有所改變,就是需要信號源與負載阻抗的的實部相等,虛部互為相反數,這叫做共厄匹配。在低頻電路中,我們一般不考慮傳輸線的匹配問題,只考慮信號源跟負載之間的情況,因為低頻信號的波長相對于傳輸線來說很長,傳輸線可以看成是“短線”,反射可以不考慮(可以這么理解:因為線短,即使反射回來,跟原信號還是一樣的)。從以上分析我們可以得出結論:如果我們需要輸出電流大,則選擇小的負載R;如果我們需要輸出電壓大,則選擇大的負載R;如果我們需要輸出功率最大,則選擇跟信號源內阻匹配的電阻R。有時阻抗不匹配還有另外一層意思,例如一些儀器輸出端是在特定的負載條件下設計的,如果負載條件改變了,則可能達不到原來的性能,這時我們也會叫做阻抗失配。

在高頻電路中,我們還必須考慮反射的問題。當信號的頻率很高時,則信號的波長就很短,當波長短得跟傳輸線長度可以比擬時,反射信號疊加在原信號上將會改變原信號的形狀。如果傳輸線的特征阻抗跟負載阻抗不匹配(相等)時,在負載端就會產生反射。為什么阻抗不匹配時會產生反射以及特征阻抗的求解方法,牽涉到二階偏微分方程的求解,在這里我們不細說了,有興趣的可參看電磁場與微波方面書籍中的傳輸線理論。傳輸線的特征阻抗(也叫做特性阻抗)是由傳輸線的結構以及材料決定的,而與傳輸線的長度,以及信號的幅度、頻率等均無關。例如,常用的閉路電視同軸電纜特性阻抗為75歐,而一些射頻設備上則常用特征阻抗為50歐的同軸電纜。另外還有一種常見的傳輸線是特性阻抗為300歐的扁平平行線,這在農村使用的電視天線架上比較常見,用來做八木天線的饋線。因為電視機的射頻輸入端輸入阻抗為75歐,所以300歐的饋線將與其不能匹配。實際中是如何解決這個問題的呢?不知道大家有沒有留意到,電視機的附件中,有一個300歐到75歐的阻抗轉換器(一個塑料包裝的,一端有一個圓形的插頭的那個東東,大概有兩個大拇指那么大的)?它里面其實就是一個傳輸線變壓器,將300歐的阻抗,變換成75歐的,這樣就可以匹配起來了。這里需要強調一點的是,特性阻抗跟我們通常理解的電阻不是一個概念,它與傳輸線的長度無關,也不能通過使用歐姆表來測量。為了不產生反射,負載阻抗跟傳輸線的特征阻抗應該相等,這就是傳輸線的阻抗匹配。如果阻抗不匹配會有什么不良后果呢?如果不匹配,則會形成反射,能量傳遞不過去,降低效率;會在傳輸線上形成駐波(簡單的理解,就是有些地方信號強,有些地方信號弱),導致傳輸線的有效功率容量降低;功率發射不出去,甚至會損壞發射設備。如果是電路板上的高速信號線與負載阻抗不匹配時,會產生震蕩,輻射干擾等。

當阻抗不匹配時,有哪些辦法讓它匹配呢?第一,可以考慮使用變壓器來做阻抗轉換,就像上面所說的電視機中的那個例子那樣。第二,可以考慮使用串聯/并聯電容或電感的辦法,這在調試射頻電路時常使用。第三,可以考慮使用串聯/并聯電阻的辦法。一些驅動器的阻抗比較低,可以串聯一個合適的電阻來跟傳輸線匹配,例如高速信號線,有時會串聯一個幾十歐的電阻。而一些接收器的輸入阻抗則比較高,可以使用并聯電阻的方法,來跟傳輸線匹配,例如,485總線接收器,常在數據線終端并聯120歐的匹配電阻。

為了幫助大家理解阻抗不匹配時的反射問題,我來舉兩個例子:假設你在練習拳擊——打沙包。如果是一個重量合適的、硬度合適的沙包,你打上去會感覺很舒服。但是,如果哪一天我把沙包做了手腳,例如,里面換成了鐵沙,你還是用以前的力打上去,你的手可能就會受不了了——這就是負載過重的情況,會產生很大的反彈力。相反,如果我把里面換成了很輕很輕的東西,你一出拳,則可能會撲空,手也可能會受不了——這就是負載過輕的情況。另一個例子,不知道大家有沒有過這樣的經歷:就是看不清樓梯時上/下樓梯,當你以為還有樓梯時,就會出現“負載不匹配”這樣的感覺了。當然,也許這樣的例子不太恰當,但我們可以拿它來理解負載不匹配時的反射情況。

高速PCB設計中的阻抗匹配(資料整理)

阻抗匹配

阻抗匹配是指在能量傳輸時,要求負載阻抗要和傳輸線的特征阻抗相等,此時的傳輸不會產生反射,這表明所有能量都被負載吸收了。反之則在傳輸中有能量損失。在高速PCB設計中,阻抗的匹配與否關系到信號的質量優劣。

PCB走線什么時候需要做阻抗匹配?

不主要看頻率,而關鍵是看信號的邊沿陡峭程度,即信號的上升/下降時間,一般認為如果信號的上升/下降時間(按10%~90%計)小于6倍導線延時,就是高速信號,必須注意阻抗匹配的問題。導線延時一般取值為150ps/inch。

特征阻抗

信號沿傳輸線傳播過程當中,如果傳輸線上各處具有一致的信號傳播速度,并且單位長度上的電容也一樣,那么信號在傳播過程中總是看到完全一致的瞬間阻抗。由于在整個傳輸線上阻抗維持恒定不變,我們給出一個特定的名稱,來表示特定的傳輸線的這種特征或者是特性,稱之為該傳輸線的特征阻抗。特征阻抗是指信號沿傳輸線傳播時,信號看到的瞬間阻抗的值。特征阻抗與PCB導線所在的板層、PCB所用的材質(介電常數)、走線寬度、導線與平面的距離等因素有關,與走線長度無關。特征阻抗可以使用軟件計算。高速PCB布線中,一般把數字信號的走線阻抗設計為50歐姆,這是個大約的數字。一般規定同軸電纜基帶50歐姆,頻帶75歐姆,對絞線(差分)為100歐姆。

常見阻抗匹配的方式

1、串聯終端匹配
在信號源端阻抗低于傳輸線特征阻抗的條件下,在信號的源端和傳輸線之間串接一個電阻R,使源端的輸出阻抗與傳輸線的特征阻抗相匹配,抑制從負載端反射回來的信號發生再次反射。

匹配電阻選擇原則:匹配電阻值與驅動器的輸出阻抗之和等于傳輸線的特征阻抗。常見的CMOS和TTL驅動器,其輸出阻抗會隨信號的電平大小變化而變化。因此,對TTL或CMOS電路來說,不可能有十分正確的匹配電阻,只能折中考慮。鏈狀拓撲結構的信號網路不適合使用串聯終端匹配,所有的負載必須接到傳輸線的末端。

串聯匹配是最常用的終端匹配方法。它的優點是功耗小,不會給驅動器帶來額外的直流負載,也不會在信號和地之間引入額外的阻抗,而且只需要一個電阻元件。

常見應用:一般的CMOS、TTL電路的阻抗匹配。USB信號也采樣這種方法做阻抗匹配。

2、并聯終端匹配
在信號源端阻抗很小的情況下,通過增加并聯電阻使負載端輸入阻抗與傳輸線的特征阻抗相匹配,達到消除負載端反射的目的。實現形式分為單電阻和雙電阻兩種形式。

匹配電阻選擇原則:在芯片的輸入阻抗很高的情況下,對單電阻形式來說,負載端的并聯電阻值必須與傳輸線的特征阻抗相近或相等;對雙電阻形式來說,每個并聯電阻值為傳輸線特征阻抗的兩倍。

并聯終端匹配優點是簡單易行,顯而易見的缺點是會帶來直流功耗:單電阻方式的直流功耗與信號的占空比緊密相關;雙電阻方式則無論信號是高電平還是低電平都有直流功耗,但電流比單電阻方式少一半。

常見應用:以高速信號應用較多。

(1)DDR、DDR2等SSTL驅動器。采用單電阻形式,并聯到VTT(一般為IOVDD的一半)。其中DDR2數據信號的并聯匹配電阻是內置在芯片中的。

(2)TMDS等高速串行數據接口。采用單電阻形式,在接收設備端并聯到IOVDD,單端阻抗為50歐姆(差分對間為100歐姆)。

什么是阻抗匹配以及為什么要阻抗匹配...

阻抗匹配在高頻設計中是一個常用的概念,這篇文章對這個“阻抗匹配”進行了比較好的解析。回答了什么是阻抗匹配。

阻抗匹配(Impedance matching)是微波電子學里的一部分,主要用于傳輸線上,來達至所有高頻的微波信號皆能傳至負載點的目的,不會有信號反射回來源點,從而提升能源效益。

大體上,阻抗匹配有兩種,一種是透過改變阻抗力(lumped-circuit matching),另一種則是調整傳輸線的波長(transmission line matching)。

要匹配一組線路,首先把負載點的阻抗值,除以傳輸線的特性阻抗值來歸一化,然后把數值劃在史密夫圖表上。

改變阻抗力

把電容或電感與負載串聯起來,即可增加或減少負載的阻抗值,在圖表上的點會沿著代表實數電阻的圓圈走動。如果把電容或電感接地,首先圖表上的點會以圖中心旋轉180度,然后才沿電阻圈走動,再沿中心旋轉180度。重覆以上方法直至電阻值變成1,即可直接把阻抗力變為零完成匹配。

調整傳輸線

由負載點至來源點加長傳輸線,在圖表上的圓點會沿著圖中心以逆時針方向走動,直至走到電阻值為1的圓圈上,即可加電容或電感把阻抗力調整為零,完成匹配。

阻抗匹配則傳輸功率大,對于一個電源來講,單它的內阻等于負載時,輸出功率最大,此時阻抗匹配。最大功率傳輸定理,如果是高頻的話,就是無反射波。對于普通的寬頻放大器,輸出阻抗50Ω,功率傳輸電路中需要考慮阻抗匹配,可是如果信號波長遠遠大于電纜長度,即纜長可以忽略的話,就無須考慮阻抗匹配了。阻抗匹配是指在能量傳輸時,要求負載阻抗要和傳輸線的特征阻抗相等,此時的傳輸不會產生反射,這表明所有能量都被負載吸收了.反之則在傳輸中有能量損失。高速 PCB布線時,為了防止信號的反射,要求是線路的阻抗為50歐姆。這是個大約的數字,一般規定同軸電纜基帶50歐姆,頻帶75歐姆,對絞線則為100歐姆,只是取個整而已,為了匹配方便。

阻抗從字面上看就與電阻不一樣,其中只有一個阻字是相同的,而另一個抗字呢?簡單地說,阻抗就是電阻加電抗,所以才叫阻抗;周延一點地說,阻抗就是電阻、電容抗及電感抗在向量上的和。在直流電的世界中,物體對電流阻礙的作用叫做電阻,世界上所有的物質都有電阻,只是電阻值的大小差異而已。電阻小的物質稱作良導體,電阻很大的物質稱作非導體,而最近在高科技領域中稱的超導體,則是一種電阻值幾近于零的東西。但是在交流電的領域中則除了電阻會阻礙電流以外,電容及電感也會阻礙電流的流動,這種作用就稱之為電抗,意即抵抗電流的作用。電容及電感的電抗分別稱作電容抗及電感抗,簡稱容抗及感抗。它們的計量單位與電阻一樣是奧姆,而其值的大小則和交流電的頻率有關系,頻率愈高則容抗愈小感抗愈大,頻率愈低則容抗愈大而感抗愈小。此外電容抗和電感抗還有相位角度的問題,具有向量上的關系式,因此才會說:阻抗是電阻與電抗在向量上的和。

阻抗匹配是指負載阻抗與激勵源內部阻抗互相適配,得到最大功率輸出的一種工作狀態。對于不同特性的電路,匹配條件是不一樣的。

在純電阻電路中,當負載電阻等于激勵源內阻時,則輸出功率為最大,這種工作狀態稱為匹配,否則稱為失配。

當激勵源內阻抗和負載阻抗含有電抗成份時,為使負載得到最大功率,負載阻抗與內阻必須滿足共扼關系,即電阻成份相等,電抗成份只數值相等而符號相反。這種匹配條件稱為共扼匹配。

一、阻抗匹配的研究

在高速的設計中,阻抗的匹配與否關系到信號的質量優劣。阻抗匹配的技術可以說是豐富多樣,但是在具體的系統中怎樣才能比較合理的應用,需要衡量多個方面的因素。例如我們在系統中設計中,很多采用的都是源段的串連匹配。對于什么情況下需要匹配,采用什么方式的匹配,為什么采用這種方式。

例如:差分的匹配多數采用終端的匹配;時鐘采用源段匹配;

1、串聯終端匹配

串聯終端匹配的理論出發點是在信號源端阻抗低于傳輸線特征阻抗的條件下,在信號的源端和傳輸線之間串接一個電阻R,使源端的輸出阻抗與傳輸線的特征阻抗相匹配,抑制從負載端反射回來的信號發生再次反射.

串聯終端匹配后的信號傳輸具有以下特點:

A 由于串聯匹配電阻的作用,驅動信號傳播時以其幅度的50%向負載端傳播;

B 信號在負載端的反射系數接近+1,因此反射信號的幅度接近原始信號幅度的50%。

C 反射信號與源端傳播的信號疊加,使負載端接受到的信號與原始信號的幅度近似相同;

D 負載端反射信號向源端傳播,到達源端后被匹配電阻吸收;?

E 反射信號到達源端后,源端驅動電流降為0,直到下一次信號傳輸。

相對并聯匹配來說,串聯匹配不要求信號驅動器具有很大的電流驅動能力。

選擇串聯終端匹配電阻值的原則很簡單,就是要求匹配電阻值與驅動器的輸出阻抗之和與傳輸線的特征阻抗相等。理想的信號驅動器的輸出阻抗為零,實際的驅動器總是有比較小的輸出阻抗,而且在信號的電平發生變化時,輸出阻抗可能不同。比如電源電壓為+4.5V的CMOS驅動器,在低電平時典型的輸出阻抗為 37Ω,在高電平時典型的輸出阻抗為45Ω[4];TTL驅動器和CMOS驅動一樣,其輸出阻抗會隨信號的電平大小變化而變化。因此,對TTL或CMOS 電路來說,不可能有十分正確的匹配電阻,只能折中考慮。

鏈狀拓撲結構的信號網路不適合使用串聯終端匹配,所有的負載必須接到傳輸線的末端。否則,接到傳輸線中間的負載接受到的波形就會象圖3.2.5中C點的電壓波形一樣。可以看出,有一段時間負載端信號幅度為原始信號幅度的一半。顯然這時候信號處在不定邏輯狀態,信號的噪聲容限很低。

串聯匹配是最常用的終端匹配方法。它的優點是功耗小,不會給驅動器帶來額外的直流負載,也不會在信號和地之間引入額外的阻抗;而且只需要一個電阻元件。

2、并聯終端匹配

并聯終端匹配的理論出發點是在信號源端阻抗很小的情況下,通過增加并聯電阻使負載端輸入阻抗與傳輸線的特征阻抗相匹配,達到消除負載端反射的目的。實現形式分為單電阻和雙電阻兩種形式。

并聯終端匹配后的信號傳輸具有以下特點:

A 驅動信號近似以滿幅度沿傳輸線傳播;

B 所有的反射都被匹配電阻吸收;

C 負載端接受到的信號幅度與源端發送的信號幅度近似相同。

在實際的電路系統中,芯片的輸入阻抗很高,因此對單電阻形式來說,負載端的并聯電阻值必須與傳輸線的特征阻抗相近或相等。假定傳輸線的特征阻抗為50Ω,則R值為50Ω。如果信號的高電平為5V,則信號的靜態電流將達到100mA。由于典型的TTL或CMOS電路的驅動能力很小,這種單電阻的并聯匹配方式很少出現在這些電路中。

雙電阻形式的并聯匹配,也被稱作戴維南終端匹配,要求的電流驅動能力比單電阻形式小。這是因為兩電阻的并聯值與傳輸線的特征阻抗相匹配,每個電阻都比傳輸線的特征阻抗大。考慮到芯片的驅動能力,兩個電阻值的選擇必須遵循三個原則:

⑴. 兩電阻的并聯值與傳輸線的特征阻抗相等;

⑵. 與電源連接的電阻值不能太小,以免信號為低電平時驅動電流過大;

⑶. 與地連接的電阻值不能太小,以免信號為高電平時驅動電流過大。

并聯終端匹配優點是簡單易行;顯而易見的缺點是會帶來直流功耗:單電阻方式的直流功耗與信號的占空比緊密相關?;雙電阻方式則無論信號是高電平還是低電平都有直流功耗。因而不適用于電池供電系統等對功耗要求高的系統。另外,單電阻方式由于驅動能力問題在一般的TTL、CMOS系統中沒有應用,而雙電阻方式需要兩個元件,這就對PCB的板面積提出了要求,因此不適合用于高密度印刷電路板。

當然還有:AC終端匹配;基于二極管的電壓鉗位等匹配方式。

二、將訊號的傳輸看成軟管送水澆花

2.1 數位系統之多層板訊號線(Signal Line)中,當出現方波訊號的傳輸時,可將之假想成為軟管(hose)送水澆花。一端于手握處加壓使其射出水柱,另一端接在水龍頭。當握管處所施壓的力道恰好,而讓水柱的射程正確灑落在目標區時,則施與受兩者皆歡而順利完成使命,豈非一種得心應手的小小成就?

2.2 然而一旦用力過度水注射程太遠,不但騰空越過目標浪費水資源,甚至還可能因強力水壓無處宣泄,以致往來源反彈造成軟管自龍頭上的掙脫!不僅任務失敗橫生挫折,而且還大捅紕漏滿臉豆花呢!

2.3 反之,當握處之擠壓不足以致射程太近者,則照樣得不到想要的結果。過猶不及皆非所欲,唯有恰到好處才能正中下懷皆大歡喜。

2.4 上述簡單的生活細節,正可用以說明方波(Square Wave)訊號(Signal)在多層板傳輸線(Transmission Line,系由訊號線、介質層、及接地層三者所共同組成)中所進行的快速傳送。此時可將傳輸線(常見者有同軸電纜Coaxial Cable,與微帶線Microstrip Line或帶線Strip Line等)看成軟管,而握管處所施加的壓力,就好比板面上“接受端”(Receiver)元件所并聯到Gnd的電阻器一般,可用以調節其終點的特性阻抗(Characteristic Impedance),使匹配接受端元件內部的需求。

三、傳輸線之終端控管技術(Termination)

3.1 由上可知當“訊號”在傳輸線中飛馳旅行而到達終點,欲進入接受元件(如CPU或Meomery等大小不同的IC)中工作時,則該訊號線本身所具備的“特性阻抗”,必須要與終端元件內部的電子阻抗相互匹配才行,如此才不致任務失敗白忙一場。用術語說就是正確執行指令,減少雜訊干擾,避免錯誤動作”。一旦彼此未能匹配時,則必將會有少許能量回頭朝向“發送端”反彈,進而形成反射雜訊(Noise)的煩惱。

3.2 當傳輸線本身的特性阻抗(Z0)被設計者訂定為28ohm時,則終端控管的接地的電阻器(Zt)也必須是28ohm,如此才能協助傳輸線對Z0的保持,使整體得以穩定在28 ohm的設計數值。也唯有在此種Z0=Zt的匹配情形下,訊號的傳輸才會最具效率,其“訊號完整性”(Signal Integrity,為訊號品質之專用術語)也才最好。

四、特性阻抗(Characteristic Impedance)

4.1 當某訊號方波,在傳輸線組合體的訊號線中,以高準位(High Level)的正壓訊號向前推進時,則距其最近的參考層(如接地層)中,理論上必有被該電場所感應出來的負壓訊號伴隨前行(等于正壓訊號反向的回歸路徑 Return Path),如此將可完成整體性的回路(Loop)系統。該“訊號”前行中若將其飛行時間暫短加以凍結,即可想象其所遭受到來自訊號線、介質層與參考層等所共同呈現的瞬間阻抗值(Instantanious Impedance),此即所謂的“特性阻抗”。是故該“特性阻抗”應與訊號線之線寬(w)、線厚(t)、介質厚度(h)與介質常數(Dk)都扯上了關系。

4.2 阻抗匹配不良的后果

由于高頻訊號的“特性阻抗”(Z0)原詞甚長,故一般均簡稱之為“阻抗”。讀者千萬要小心,此與低頻AC交流電(60Hz)其電線(并非傳輸線)中,所出現的阻抗值(Z)并不完全相同。數位系統當整條傳輸線的Z0都能管理妥善,而控制在某一范圍內(±10﹪或 ±5﹪)者,此品質良好的傳輸線,將可使得雜訊減少,而誤動作也可避免。

但當上述微帶線中Z0的四種變數(w、t、h、 r)有任一項發生異常,例如訊號線出現缺口時,將使得原來的Z0突然上升(見上述公式中之Z0與W成反比的事實),而無法繼續維持應有的穩定均勻(Continuous)時,則其訊號的能量必然會發生部分前進,而部分卻反彈反射的缺失。如此將無法避免雜訊及誤動作了。例如澆花的軟管突然被踩住,造成軟管兩端都出現異常,正好可說明上述特性阻抗匹配不良的問題。

4.3 阻抗匹配不良造成雜訊

上述部分訊號能量的反彈,將造成原來良好品質的方波訊號,立即出現異常的變形(即發生高準位向上的Overshoot,與低準位向下的Undershoot,以及二者后續的Ringing)。此等高頻雜訊嚴重時還會引發誤動作,而且當時脈速度愈快時雜訊愈多也愈容易出錯。

那么是否什么時候都要考慮阻抗匹配?

在普通的寬頻帶放大器中,因為輸出阻抗為50Ω,所以需要考慮在功率傳輸電路中進行阻抗匹配。但是,實際上當電纜的長度對于信號的波長來說可以忽略不計時,就勿需阻抗匹配的。

考慮信號頻率為1MHz,其波長在空氣中為300m,在同軸電纜中約為200m。在通常使用的長度為1m左右的同軸電纜中,是在完全可忽略的范圍之內。(圖H)

67763cf8-d177-11ed-bfe3-dac502259ad0.jpg


如果存在阻抗,那么在阻抗上就會產生功率消耗,所以不做阻抗匹配其結果就會使放大器的輸出功率發生無用的浪費。

6786071e-d177-11ed-bfe3-dac502259ad0.jpg

審核編輯:湯梓紅

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 放大器
    +關注

    關注

    143

    文章

    13590

    瀏覽量

    213491
  • 阻抗匹配
    +關注

    關注

    14

    文章

    353

    瀏覽量

    30810
  • 信號
    +關注

    關注

    11

    文章

    2791

    瀏覽量

    76772
  • 晶體管
    +關注

    關注

    77

    文章

    9693

    瀏覽量

    138197
  • 傳輸線
    +關注

    關注

    0

    文章

    376

    瀏覽量

    24034

原文標題:阻抗匹配基礎知識詳解

文章出處:【微信號:CloudBrain-TT,微信公眾號:云腦智庫】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    阻抗匹配相關知識總結

    阻抗匹配,作為射頻設計中最為重要的一個環節,每一個射頻工程師都無法繞過去的。 今天我們再加以總結,把整個阻抗匹配,展現給大家。
    的頭像 發表于 04-27 09:36 ?5976次閱讀
    <b class='flag-5'>阻抗匹配</b>相關<b class='flag-5'>知識</b>總結

    阻抗匹配知識

    阻抗匹配知識
    發表于 08-03 21:52

    阻抗匹配基礎zz

    狀態產生明顯的影響。對電子設備互連來說,例如信號源連放大器,前級連后級,只要后一級的輸入阻抗大于前一級的輸出阻抗5-10倍以上,就可認為阻抗匹配良好;對于放大器連接音箱來說,電子管機應選用與其輸出端
    發表于 12-01 10:37

    阻抗匹配基礎知識詳解 簡直新手的好老師超級詳細

    阻抗匹配基礎知識詳解簡直新手的好老師超級詳細
    發表于 04-08 13:48

    掃盲啦!新手福利不要錯過——阻抗匹配基礎知識詳解

    信號源連放大器,前級連后級,只要后一級的輸入阻抗大于前一級的輸出阻抗5-10倍以上,就可認為阻抗匹配良好;對于放大器連接音箱來說,電子管機應選用與其輸出端標稱阻抗相等或接近的音箱,而晶
    發表于 07-08 15:32

    【轉帖】阻抗匹配基礎知識詳解

    信號源連放大器,前級連后級,只要后一級的輸入阻抗大于前一級的輸出阻抗5-10倍以上,就可認為阻抗匹配良好;對于放大器連接音箱來說,電子管機應選用與其輸出端標稱阻抗相等或接近的音箱,而晶
    發表于 05-21 16:59

    阻抗匹配基礎知識詳解

    一級的輸出阻抗5-10倍以上,就可認為阻抗匹配良好;對于放大器連接音箱來說,電子管機應選用與其輸出端標稱阻抗相等或接近的音箱,而晶體管放大器則無此限制,可以接任何阻抗的音箱。
    發表于 02-15 22:28

    電路阻抗匹配設計

    電路阻抗匹配設計
    發表于 08-12 18:37 ?0次下載

    什么是阻抗匹配

     什么是阻抗匹配?   阻抗匹配(Imped
    發表于 09-25 14:21 ?4525次閱讀

    怎樣理解阻抗匹配

    怎樣理解阻抗匹配阻抗匹配是指信號源或者傳輸線跟負載之間的一種合適的搭配方式。阻抗匹配分為低頻和高頻兩種情況討論。
    發表于 11-30 10:30 ?1479次閱讀

    阻抗匹配及相關知識匯集

    阻抗匹配及相關知識匯集 阻抗匹配(Impedance matching)是微波電子學里的一部分,主要用于傳輸線上,來達至所有高頻的微波信號皆能傳至負載點的目的,不會有信號反
    發表于 01-23 11:18 ?1058次閱讀

    什么是阻抗匹配以及為什么要阻抗匹配

    什么是阻抗匹配以及為什么要阻抗匹配,個人收集整理了很久的資料,大家根據自己情況,有選擇性的下載吧~
    發表于 10-28 10:01 ?64次下載

    怎樣理解阻抗匹配_pcb阻抗匹配如何計算

    本文主要介紹的是阻抗匹配,首先介紹了阻抗匹配條件,其次闡述了如何理解阻抗匹配及常見阻抗匹配的方式,最后介紹了pcb阻抗匹配如何計算,具體的跟
    發表于 05-02 17:11 ?4.3w次閱讀
    怎樣理解<b class='flag-5'>阻抗匹配</b>_pcb<b class='flag-5'>阻抗匹配</b>如何計算

    阻抗匹配是什么意思_阻抗匹配原理詳解

    本文主要詳解什么是阻抗匹配,首先介紹了輸入及輸出阻抗是什么,其次介紹了阻抗匹配的原理,最后闡述了阻抗匹配的應用領域,具體的跟隨小編一起來了解
    的頭像 發表于 05-03 11:42 ?5.1w次閱讀
    <b class='flag-5'>阻抗匹配</b>是什么意思_<b class='flag-5'>阻抗匹配</b>原理<b class='flag-5'>詳解</b>

    阻抗匹配的原理及應用

    本文主要詳解什么是阻抗匹配,首先介紹了輸入及輸出阻抗是什么,其次介紹了阻抗匹配的原理,最后闡述了阻抗匹配的應用領域,具體的跟隨小編一起來了解
    的頭像 發表于 08-22 14:10 ?3568次閱讀
    主站蜘蛛池模板: 亚洲国产成人精品久久| 五月婷婷视频在线| 色在线观看视频| 国产精品乳摇在线播放| 免费永久视频| 狠狠干2021| 欧美一级在线免费观看| 午夜小片| 亚洲欧美日韩特级毛片| 日日噜噜夜夜狠狠tv视频免费| sesese在线观看| 欧美大色网| 色天使色婷婷丁香久久综合| a色在线| 欧美激情区| 色多多黄| 天天干夜夜笙歌| 狠狠色噜噜狠狠狠狠米奇777| 免费人成网555www| 美女喷白浆| 亚洲欧美在线视频免费| 国产成人免费无庶挡视频| 午夜啪啪免费视频| 日本亚洲成人| 手机看片欧美日韩| 在线观看国产日本| 国产成年美女毛片80s| 免费视频在线观看1| 日韩国产片| 奇米7777影视| 亚洲www| 天天综合天天综合| 99热精品久久只有精品30| 国产免费久久精品| 美国bj69video18| 免费黄色毛片| 在线观看黄色网| 七月丁香八月婷婷综合激情| 激情综合在线| 日本色网址| 国产综合视频在线|