碳化硅(SiC)的性能潛力是毋庸置疑的,但設(shè)計者必須掌握一個關(guān)鍵的挑戰(zhàn):確定哪種設(shè)計方法能夠在其應(yīng)用中取得最大的成功。
先進的器件設(shè)計都會非常關(guān)注導(dǎo)通電阻,將其作為特定技術(shù)的主要基準參數(shù)。然而,工程師們必須在主要性能指標(如電阻和開關(guān)損耗),與實際應(yīng)用需考慮的其他因素(如足夠的可靠性)之間找到適當?shù)钠胶狻?/p>
優(yōu)秀的器件應(yīng)該允許一定的設(shè)計自由度,以便在不對工藝和版圖進行重大改變的情況下適應(yīng)各種工況的需要。然而,關(guān)鍵的性能指標仍然是盡可能低的比電阻,并結(jié)合其他重要的參數(shù)。圖1顯示了我們認為必不可少的幾個標準,或許還可以增加更多。
圖1:SiC MOSFET的魯棒性和制造穩(wěn)定性(右)必須與性能參數(shù)(左)相平衡
元件在其目標應(yīng)用的工作條件下的可靠性是最重要的驗收標準之一。與已有的硅(Si)器件的主要區(qū)別是:SiC元件在更強的內(nèi)部電場下工作。因此,設(shè)計者應(yīng)該非常謹慎地分析相關(guān)機制。硅和碳化硅器件的共同點是,元件的總電阻是由從漏極和源極的一系列電阻的串聯(lián)定義的。
這包括靠近接觸孔的高摻雜區(qū)域電阻、溝道電阻、JFET(結(jié)型場效應(yīng)晶體管)區(qū)域的電阻以及漂移區(qū)電阻(見圖2)。請注意,在高壓硅MOSFET(金屬氧化物半導(dǎo)體場效應(yīng)晶體管)中,漂移區(qū)阻顯然在總電阻中占主導(dǎo)地位。而在碳化硅器件中,工程師可以使用具有更高電導(dǎo)率的漂移區(qū),從而降低漂移區(qū)電阻的總比重。
圖2:平面DMOS SiC MOSFET(左)和垂直溝槽TMOS SiC MOSFET的剖面圖,以及與電阻有關(guān)的貢獻的相應(yīng)位置
設(shè)計者必須考慮到,MOSFET的關(guān)鍵部分——碳化硅外延與柵極氧化層(二氧化硅)之間的界面,與硅相比有以下差異:
SiC的單位面積的表面態(tài)密度比Si高,導(dǎo)致Si-和C-懸掛鍵的密度更高。靠近界面的柵極氧化層中的缺陷可能在帶隙內(nèi)出現(xiàn),并成為電子的陷阱。
熱生長氧化物的厚度在很大程度上取決于晶面。
與硅器件相比,SiC器件在阻斷模式下的漏極誘導(dǎo)電場要高得多(MV而不是kV)。這就需要采取措施限制柵極氧化物中的電場,以保持氧化物在阻斷階段的可靠性。另見圖3:對于TMOS(溝槽MOSFET),薄弱點是溝槽拐角,而對于DMOS(雙擴散金屬氧化物半導(dǎo)體),薄弱點是元胞的中心。
與Si器件相比,SiC MOS結(jié)構(gòu)在給定的電場下顯示出更高的隧穿電流,因為勢壘高度較低。因此,工程師必須限制界面上SiC一側(cè)的電場。
上面提到的界面缺陷導(dǎo)致了非常低的溝道遷移率。因此,溝道對總導(dǎo)通電阻的貢獻很大。所以,SiC相對于硅,因為非常低的漂移區(qū)電阻而獲得的優(yōu)勢,被較高的溝道電阻削弱。
控制柵氧化層的電場強度
一個常用的降低溝道電阻的方法,是在導(dǎo)通狀態(tài)下增加施加在柵氧化層上的電場——或者通過更高的柵源(VGS(on))偏壓進行導(dǎo)通,或者使用相當薄的柵極氧化層。所應(yīng)用的電場超過了通常用于硅基MOSFET器件的數(shù)值(4至5MV/cm,而硅中最大為3MV/cm)。在導(dǎo)通狀態(tài)下,處于這種高電場的柵氧化層有可能加速老化,并限制了篩選外在氧化物缺陷的能力[1]。
圖3
左圖:平面MOSFET(半元胞)的典型結(jié)構(gòu)。它顯示了與氧化物場應(yīng)力有關(guān)的兩個敏感區(qū)域。
右圖:溝槽式MOSFET(半元胞)的典型結(jié)構(gòu)。這里的關(guān)鍵問題是溝槽邊角的氧化層應(yīng)力。
基于這些考慮,很明顯,SiC中的平面MOSFET器件實際上有兩個與氧化物場應(yīng)力有關(guān)的敏感區(qū)域,如圖3的左邊部分所示。首先,在反向阻斷模式下,漂移區(qū)和柵極氧化物界面存在高電場應(yīng)力。其次,柵極和源極之間的重疊部分在導(dǎo)通狀態(tài)下有應(yīng)力。
在導(dǎo)通狀態(tài)下的高電場被認為是更危險的,因為只要保證導(dǎo)通時的性能,就沒有器件設(shè)計措施可以減少導(dǎo)通狀態(tài)下的電場應(yīng)力。找正品元器件,上唯樣商城。我們的總體目標是在盡量減小SiC的RDS(on)的同時,保證柵極氧化層安全可靠。
因此,我們決定放棄DMOS技術(shù),從一開始就專注于溝槽型器件。從具有高缺陷密度的晶面轉(zhuǎn)向其他更有利的晶面方向,可以在低柵氧化層場強下實現(xiàn)低通道電阻。
我們開發(fā)了CoolSiC? MOSFET元胞設(shè)計,以限制通態(tài)和斷態(tài)時柵極氧化物中的電場(見圖4)。同時,它為1200V級別提供了一個有吸引力的比導(dǎo)通電阻,即使在大規(guī)模生產(chǎn)中也能以穩(wěn)定和可重復(fù)的方式實現(xiàn)。低導(dǎo)通電阻使得VGS(on)電壓可以使用低至15V的偏壓,同時有足夠高的柵源-閾值電壓,通常為4.5V。這些數(shù)值是SiC晶體管領(lǐng)域的基準。
該設(shè)計的特點包括通過自對準工藝將溝道定位在一個單一的晶面。這確保了最高的溝道遷移率,并縮小了閾值電壓分布范圍。另一個特點是深p型與實際的MOS溝槽在中心相交,以便允許窄的p+到p+間距尺寸,從而有效地屏蔽溝槽氧化層拐角。
總之,我們可以說,應(yīng)用于我們的CoolSiC?器件的設(shè)計理念不僅提供了良好的導(dǎo)通電阻,而且還為大規(guī)模生產(chǎn)提供了可靠的制造工藝。
審核編輯:湯梓紅
-
MOSFET
+關(guān)注
關(guān)注
147文章
7194瀏覽量
213589 -
SiC
+關(guān)注
關(guān)注
29文章
2837瀏覽量
62711 -
開關(guān)損耗
+關(guān)注
關(guān)注
1文章
63瀏覽量
13504
發(fā)布評論請先 登錄
相關(guān)推薦
評論