第一章. 緒論
1.1微帶天線的歷史和優(yōu)缺點(diǎn)
微帶天線最初作為火箭和導(dǎo)彈上的共形全向天線獲得了應(yīng)用,現(xiàn)在微帶天線廣泛應(yīng)用于大約100MHz~100GHz的寬廣頻域上的大量無線電設(shè)備中,特別是飛行器上和地面便攜設(shè)備中。微帶天線的特征是比通常的微波天線有更多的物理參數(shù),具有任意的幾何形狀和尺寸,有三種基本類型:微帶貼片天線、微帶行波天線和微帶縫隙天線。
和常用的微波天線相比,具有以下優(yōu)點(diǎn):
1)體積小、重量輕、低剖面、能與載體共形,并且除了在饋電點(diǎn)處要開出引線外,不破壞載體的機(jī)械結(jié)構(gòu)。
2)性能多樣化。設(shè)計(jì)的微帶元最大輻射方向可以在邊射到端射范圍內(nèi)調(diào)整,實(shí)現(xiàn)多種幾何方式,還可以實(shí)現(xiàn)在雙頻或多頻方式下工作
3)能夠與有源器件、電路集成為統(tǒng)一的組件,適合大規(guī)模生產(chǎn),簡化整機(jī)的制作和調(diào)試,大大降低成本
和其它天線相比,其缺點(diǎn)如下:
1)相對(duì)帶寬較窄,特別是諧振式微帶天線(目前已經(jīng)有了一些改進(jìn)方法)
2)損耗較大,因此效率較低,特別是行波型微帶天線,在匹配負(fù)載上有較大損耗
3)單個(gè)微帶天線的功率容量較小
4)介質(zhì)基片對(duì)性能影響較大。由于工藝條件的限制,批量生產(chǎn)的介質(zhì)基片的均勻性和一致性還有欠缺,影響了微帶天線的批產(chǎn)和大型天線陣的構(gòu)建
相對(duì)帶寬較窄一般認(rèn)為是微帶天線的主要缺點(diǎn),單現(xiàn)在采用孔徑耦合的層疊式結(jié)構(gòu)的微帶天線,其阻抗帶寬已經(jīng)達(dá)到69%左右,具有廣闊的應(yīng)用前景,一般而言,它在飛行器上的應(yīng)用處于優(yōu)越地位,如衛(wèi)星通信、導(dǎo)引頭、共形相控陣等,在較低功率的各種軍用民用設(shè)備如醫(yī)用探頭等,由于它可以集成化,使其在毫米波段的優(yōu)勢(shì)更為明顯。
1.2微帶天線的分析設(shè)計(jì)方法
天線分析的基本問題就是求解天線在周圍空間建立的電磁場(chǎng),求得電磁場(chǎng)之后,進(jìn)而得到其方向圖、增益和輸入阻抗等特性指標(biāo)。分析微帶天線的基本理論大致可分為三類。最早出現(xiàn)的也是最簡單的是傳輸線模型(TLM,Transmission Line Model)理論,主要用于矩形貼片,更嚴(yán)格更有用的是空腔模型理論(CM,Cavity Model),可用于各種規(guī)則貼片(基本限于天線厚度遠(yuǎn)小于波長的情況)最嚴(yán)格而計(jì)算最復(fù)雜的是積分方程法(IEM,Integral Equation Method),即全波理論(FW,F(xiàn)ull Wave),理論上講,積分方程法可用于各種結(jié)構(gòu)、任意厚度的微帶天線,但要受計(jì)算模型的精度和機(jī)時(shí)的限制。從數(shù)學(xué)處理上看,第一種理論將分析簡化為一維的傳輸線問題;第二種理論則發(fā)展到基于邊值問題的求解;第三種理論進(jìn)一步可以計(jì)入第三維的變化,不過計(jì)算費(fèi)時(shí)。基于積分方程的簡化產(chǎn)生了格林函數(shù)法(GFA,Green’s Function Approach);由空腔模型擴(kuò)展到多端口網(wǎng)絡(luò)法(MNA,Multiport network Approach).
微帶線的傳輸模式是將微帶線看成一種開放線路,因此其電磁場(chǎng)可無限延伸。這樣微帶線的場(chǎng)空間由兩個(gè)不同介電常數(shù)的區(qū)域(空氣和介質(zhì))構(gòu)成,只有填充均勻媒質(zhì)的傳輸線才能傳輸單一的純橫向場(chǎng)-TEM模。由于空氣-介質(zhì)分界面的存在,使得微帶中的傳輸模是具有電場(chǎng)、磁場(chǎng)所有三個(gè)分量(包括縱向分量)的混合模,但在頻率不太高如12GHz以下,基片厚度遠(yuǎn)小于工作波長,能量大部分都集中在導(dǎo)體帶下面的介質(zhì)基片內(nèi),且此區(qū)域的縱向場(chǎng)分量很弱,因此微帶傳輸?shù)闹髂:蚑EM模很相似,稱為準(zhǔn)TEM模。傳輸線法最簡單,也最為直觀,利用端縫輻射的概念說明輻射的機(jī)理,由于傳輸線模式的限制,其難于應(yīng)用在矩形片以外的情況,對(duì)于矩形片,傳輸線模式相當(dāng)于腔模理論中的基膜。在諧振頻率上,計(jì)算的場(chǎng)分布與實(shí)際很接近,參量計(jì)算合乎工程精度,但失諧大時(shí),相差很大,計(jì)算不再可靠,基本的傳輸線法對(duì)諧振頻率的預(yù)測(cè)是不夠準(zhǔn)確的,利用一些修正方法(如等效伸長)可將誤差減小到1%以內(nèi),如果通過樣品實(shí)測(cè)諧振頻率,然后在調(diào)整,效果更好。
空腔模型理論基于薄微帶天線的假設(shè),將微帶貼片與接地板之間的空間看成是四周為磁臂,上下為電壁的諧振腔(確切的說是漏波空腔)。天線輻射場(chǎng)由空腔四周的等效磁流來得出,天線的輸入阻抗可根據(jù)空腔內(nèi)場(chǎng)和饋源邊界條件來求得。腔模理論特別是多模理論是對(duì)傳輸線法的發(fā)展,能應(yīng)用于范圍更廣的微帶天線,并且由于計(jì)及了高次模,因此算得的阻抗曲線較準(zhǔn),且計(jì)算量不算大,比較適合工程設(shè)計(jì)的需要。但基本的腔模理論同樣要經(jīng)過修正,才能得到較為準(zhǔn)確的結(jié)果。特別是邊界導(dǎo)納的引入,把腔內(nèi)外的電磁問題分成為獨(dú)立的問題,這在理論上是嚴(yán)格的,只是邊界導(dǎo)納的確定很困難,計(jì)算只能是近似的。在腔模理論中,認(rèn)為腔內(nèi)場(chǎng)是二維函數(shù),這在薄基片時(shí)是合理的,而對(duì)于厚基片則將引入誤差。由于微帶天線的目的就是降低拋面高度,因此在大多數(shù)情況下是不成問題的,但在毫米波段就需要另行考慮了。
積分方程法和腔模理論的基本立足點(diǎn)不同,它討論的是開放的空間,是以開放空間的格林函數(shù)為基礎(chǔ),基本方程是嚴(yán)格的,除了少數(shù)例外,通常用矩量法求解。
要得到高增益、掃描波束或波束控制等特性,只有將離散的輻射元組成陣列才有可能,同一陣列中輻射元可以相同也可以不同,在空間可以排成線陣、面陣或立體陣。
1.3 微帶天線的應(yīng)用
微帶天線優(yōu)勢(shì)有低剖面、價(jià)格偏移并可制成多功能、可共形的天線;可集成到無線電設(shè)備內(nèi)部,可用于室內(nèi)外,尺寸可大可小,大的微帶天線其長度可達(dá)十幾米。
微帶天線在空間技術(shù)中如X-SAR(X波段合成孔徑雷達(dá))、SIR(航天飛船成像雷達(dá))、海洋衛(wèi)星等以不同的微帶形式完成特定的功能。在可移動(dòng)衛(wèi)星通信中以及內(nèi)部集成的微帶天線在PCS(個(gè)人通信業(yè)務(wù))/蜂窩電話和其它手持便攜式通信設(shè)備中都有廣泛的應(yīng)用。
注:便攜式無限通信設(shè)備一般要求天線要小、輕、對(duì)兩個(gè)正交極化靈敏。輻射方向圖在所有主平面上必須是準(zhǔn)各向同性的,并且,在許多應(yīng)用中,需要寬頻帶。人體對(duì)天線的影響以及人體對(duì)天線輻射的吸收都要盡可能的小,此外,總是希望天線集成在印制電路板上或塑料盒里。由此需要使用內(nèi)部集成的天線,例如微帶天線。內(nèi)置天線機(jī)械強(qiáng)度大,不易折斷;不增加設(shè)備的尺寸;使用不需要拉伸,人為影響小;并且使用高水平的防護(hù)技術(shù),可以使天線與人體的作用減到最小。微帶天線能提供50Ω輸入阻抗,因此不需要匹配電路或變換器;比較容易精確制造,可重復(fù)性較好;可通過耦合饋電,天線和RF電路不需要物理連接;較易將發(fā)射和接收信號(hào)頻段分開,因此可以省掉收發(fā)轉(zhuǎn)換開關(guān)或至少使設(shè)計(jì)簡化;容易制成雙頻段雙極化模式。因此微帶天線是最好的選擇之一。
第二章. 微帶陣列天線的基本理論
天線是各種無線電設(shè)備必不可少的組成部分,它能有效的、定向的輻射或接收無線電波并通過饋線與收發(fā)系統(tǒng)聯(lián)系起來,起著能量轉(zhuǎn)換作用。
從本質(zhì)上講,微波傳輸線(傳輸微波信息和能量的各種形式的傳輸系統(tǒng)的總稱)是一個(gè)封閉系統(tǒng),基本功能就是傳輸電磁能量,其電磁場(chǎng)被束縛在傳輸線附近而不會(huì)輻射到遙遠(yuǎn)的空間,自身的不連續(xù)性可以用來構(gòu)成各種形式的微波元件。天線是由傳輸線演變而來,但其基本功能是向空間輻射或接收電磁能量,是一個(gè)開放的系統(tǒng)。
不管是線天線還是面天線,其輻射源都是高頻電流元,這是共性。因此討論電流元的輻射場(chǎng)是討論天線問題的出發(fā)點(diǎn)。
要解決天線的兩個(gè)最主要的問題是阻抗特性和方向特性。前者要解決特性和饋線的匹配問題;后者要解決輻射和定向接收問題,亦即解決提高發(fā)射功率或接收機(jī)靈敏度問題。但這一切都要先求出天線在遠(yuǎn)區(qū)的電磁場(chǎng)分布。為此需要求解滿足天線邊界條件的麥克斯韋方程組。嚴(yán)格數(shù)學(xué)求解是很困難的,經(jīng)常采用工程近似的方法進(jìn)行研究,即用某種初始場(chǎng)的近似分布代替真實(shí)的準(zhǔn)確分布來計(jì)算輻射場(chǎng)。這樣可以避免嚴(yán)格的理論求解又可以獲取一定的精確度。
2.1 微帶天線單元
結(jié)構(gòu)最簡單的微帶天線是由貼在帶有金屬底板的介質(zhì)基片上的輻射貼片構(gòu)成。貼片導(dǎo)體通常是銅或金,可采取任意形狀。但通常采用常規(guī)的形狀以簡化分析和預(yù)期其性能。基片的介電常數(shù)應(yīng)較低,這樣可以增強(qiáng)產(chǎn)生輻射的邊緣場(chǎng)。微帶天線單元/陣列其結(jié)構(gòu)通常都比較簡單,但電磁場(chǎng)的分析卻很復(fù)雜。一方面,微帶天線的品質(zhì)因數(shù)很高,較難得到精確的阻抗特性;介質(zhì)的各向異性、加載、損耗、表面波效應(yīng)等影響也較嚴(yán)重。另一方面,微帶特性幾何結(jié)構(gòu)多樣(不同貼片單元形狀、饋電方法以及寄生單元或?qū)盈B單元的應(yīng)用,共面饋電網(wǎng)絡(luò)與有源線路的集成等)。
微帶特性的分析方法主要分為基于簡化假設(shè)的近似方法和全波分析方法兩類。全波分析法有更好的適應(yīng)性和更高的精度,但速度較慢。第一類方法包括傳輸線模型、空腔模型和分段模型。該方法講貼片單元當(dāng)作一段傳輸線或是空腔諧振器,簡化了分析和計(jì)算,提高了速度,物理概念清晰,可以提供設(shè)計(jì)的初始數(shù)據(jù)。
2.1.1微帶天線的傳輸線模型
基本假設(shè):
1)微帶片和金屬底板構(gòu)成一段微帶傳輸線,傳輸準(zhǔn)TEM波,波的傳輸方向決定于饋電點(diǎn)。線段長度L≈λ g /2,λg為準(zhǔn)TEM波的波長。場(chǎng)在傳輸方向上是駐波分布,而在垂直方向上是常數(shù)。
2)傳輸線的兩個(gè)開口端(始端和末端)等效為兩個(gè)輻射縫,場(chǎng)為W,寬為h,縫口徑場(chǎng)即為傳輸線開口端場(chǎng)強(qiáng)。縫平面看作位于微帶片兩端的延伸面上,即是講開口面向上折轉(zhuǎn)90^o^,而開口場(chǎng)強(qiáng)隨之折轉(zhuǎn)。
由上可見當(dāng)L=λ g /2時(shí),二縫上切向電場(chǎng)均為x方向,且等幅同相,它們等效為磁流,由于金屬底板的作用,相當(dāng)于有二倍磁流向上半空間輻射。縫隙上等效磁流密度為
M s =-2 ** V /** h
V為傳輸線開口端電壓。
由于縫已經(jīng)放平,在計(jì)算上半空間輻射場(chǎng)時(shí),就可以按照自由空間處理。這是這種方法的方便之處。
圖2.1 傳輸線法物理模型
2.1.2輻射元方向圖
微帶輻射元的方向圖可由其等效磁流元的輻射場(chǎng)得出。
由圖2.1可見,微帶天線的輻射等效為二元縫陣的輻射,并且縫上等效磁流是均勻的,可求出天線的輻射場(chǎng)為:
2.2微帶陣列
微帶天線單元的增益一般只有6~8dB。為獲得更大增益,或?yàn)榱藢?shí)現(xiàn)特定的方向性要求,常采用由微帶輻射元組成的微帶陣列。最簡單的排陣方式是直線陣。其饋電結(jié)構(gòu)一般采用串饋或并饋。
2.2.1線陣輻射特性
由相同而且取向一致的輻射元組成的陣列方向圖是其輻射元方向圖和陣因子方向圖的乘積(方向圖乘積定理)。陣因子方向圖就是將實(shí)際輻射元用無方向性的點(diǎn)源代替(具有原來的機(jī)理振幅和相位)而形成的陣方向圖。微帶輻射元的方向圖可由其等效磁流元的輻射場(chǎng)得出,這樣就可以求出微帶線陣的的輻射特性。
圖2.2 N元線陣
一般根據(jù)下式進(jìn)行選擇不出現(xiàn)柵瓣的元間距:
2.2.2平面陣天線
如圖2.3所示,矩形平面陣中各單元相同,位于原點(diǎn)的第00號(hào)單元為陣的中心點(diǎn),x方向單元編號(hào)m∈(- M ~ M ),y方向的單元編號(hào)n∈(- N ~ N ),第00號(hào)單元為相位參考點(diǎn),忽略陣中各單元間的互耦影響時(shí),設(shè)各元的激勵(lì)電流為:
由此可見平面陣因子是兩個(gè)線陣因子的乘積,因此可以用線陣方向性分析的結(jié)果分析平面陣的方向性。在x方向線陣形成圍繞x軸的圓錐形波束,y方向形成圍繞y軸的圓錐波束。因此,平面陣因子的主瓣是兩個(gè)線陣圓錐主瓣相交部分的乘積,這就得到了兩個(gè)針狀主瓣,一個(gè)指向z>0空間,另一個(gè)指向z<0空間。在實(shí)際應(yīng)用中,總是選擇陣為單向輻射,即只有z>0空間輻射的針狀主瓣。研究兩個(gè)主平面的方向圖特性時(shí):
圖2.3矩形平面陣
2.3電掃描天線
由于天線波束的指向始終與相位波陣面相垂直,因此,只要改變相位波陣面的位置,就能實(shí)現(xiàn)天線波束的掃描。根據(jù)改變相位波陣面的方法不同,波束掃描大致分為三類:
1.相位掃描
在陣列中每一個(gè)單元都安裝一個(gè)移相器,相移量能在0~2π之間調(diào)整,用電子控制每個(gè)移相器,以達(dá)到快速掃描的目的,即相控陣天線,陣中每個(gè)單元間距為d,波束掃描角為θ0,則相鄰單元之間的相移量為ψ=2πd sinθ0/λ,可見相位掃描具有頻率敏感性,即如果相位不隨頻率變化,則掃描角θ0必與頻率有關(guān),改變頻率也會(huì)改變波束掃描角。
2.時(shí)延掃描
將相掃天線中的每一個(gè)移相器都換成可變時(shí)間延遲線,則相鄰單元之間的相移量變換為時(shí)間延遲量t=dsinθ0/c,式中c為電磁波在真空中的傳播速度為一常數(shù),由此可知波束掃描角θ0與頻率無關(guān)
3.頻率掃描
頻掃天線的波束指向就是隨發(fā)射機(jī)振蕩頻率的改變而變化,即波束指向是頻率的函數(shù),而一般的頻掃天線總是與相掃天線結(jié)合應(yīng)用構(gòu)成所謂的三坐標(biāo)雷達(dá),即方位面采用相掃,俯仰面采用頻掃。
2.3.1相控陣天線
電掃描天線的典型形式就是相控陣天線。它與傳統(tǒng)的機(jī)械掃描天線相比,具有高增益、大功率、多波束和多功能、高數(shù)據(jù)率、高可靠性和易實(shí)現(xiàn)接收機(jī)自動(dòng)控制等諸多優(yōu)點(diǎn)。
相控陣天線的典型框圖如圖2.4所示:
發(fā)射機(jī)的射頻能量經(jīng)饋電網(wǎng)絡(luò)進(jìn)行功率分配,按預(yù)定比例饋送到陣列中的各個(gè)單元的移相器,經(jīng)適當(dāng)?shù)囊葡嗪笤陴伣o陣列各單元進(jìn)行輻射。波束控制指令信號(hào)輸入計(jì)算機(jī),運(yùn)算后通過移相器控制電路進(jìn)入各單元移相器,分別控制各自的相移量,從而獲得各相鄰單元間所要求的相位差,使天線波束指向預(yù)期方向。
事實(shí)上,如果將n個(gè)完全相同的天線所組成的n元均勻線陣中的每個(gè)天線都帶上一個(gè)可控移相器,則該天線陣就成為一維相控陣天線。
假如單元天線的饋電電流不同相,設(shè)相鄰兩單元的電流間的相移為δ,則當(dāng)改變?chǔ)臅r(shí),波束指向在掃描空間移動(dòng)。設(shè)最大輻射方向發(fā)生在θm0,則有δ=-kdsinθm0。由此,改變相鄰單元之間的相位差δ,就可以改變波束的最大輻射方向θm0,實(shí)現(xiàn)波束掃描。
2.3.2盲點(diǎn)效應(yīng)
在相控陣天線的設(shè)計(jì)中,必須考慮兩個(gè)問題:
1)在實(shí)空間不出現(xiàn)柵瓣
2)抑制或消除盲點(diǎn)
實(shí)踐發(fā)現(xiàn),當(dāng)波束掃描到某一角度θn,天線處于全反射狀態(tài),既不輻射也不接收能量,
角θn稱為盲點(diǎn)。
從物理本質(zhì)上講,產(chǎn)生盲點(diǎn)的原因有兩個(gè)。一是相控陣中存在高次模和互耦效應(yīng)。高次模發(fā)生在一個(gè)單元,而其它單元都與它們的發(fā)射機(jī)端接。由于互耦效應(yīng),在某些特定掃描角上,被激勵(lì)起的高次模與主模耦合,致使口面場(chǎng)受到抵消。因而不能輻射也不能接收功率。二是漏波的抵消效應(yīng),所謂漏波是指當(dāng)陣列單元輻射時(shí),有一部分沿陣列表面向后泄漏的能量,這個(gè)漏波在這里的無源端接的單元上也會(huì)產(chǎn)生輻射波,于是原始的輻射波與漏波產(chǎn)生的輻射波在陣外空間疊加,在某個(gè)特定方向上造成盲點(diǎn)。
在工程上,消除盲點(diǎn)的主要措施是合理選擇陣格尺寸和輻射單元的口徑尺寸。單元口徑尺寸越大,盲點(diǎn)越靠近陣列的法線方向,因此應(yīng)盡量減小口徑尺寸,使盲點(diǎn)靠近柵瓣方向,再選用較小尺寸的陣格,使柵瓣遠(yuǎn)離掃描空間,這樣既可以再掃描空間不出現(xiàn)柵瓣又抑制了盲點(diǎn)。
2.3.3天線的副瓣性能
在相控陣天線的系統(tǒng)性能中,天線的副瓣特性是很重要的,相控陣天線的副瓣特性在很大程度上決定了雷達(dá)抗干擾、抗反輻射導(dǎo)彈及雜波抑制等戰(zhàn)術(shù)性能,是雷達(dá)系統(tǒng)的一個(gè)重要指標(biāo)。
為降低相控陣天線的副瓣電平,通常對(duì)陣面天線單元的電流分布采用各種形式的加權(quán),但加權(quán)之后,天線波束的主瓣展寬,將降低天線增益和雷達(dá)角分辨率,不利于抗從主瓣進(jìn)入的干擾。
低副瓣與超低副瓣天線通常是指副瓣電平必主瓣電平低30dB與40dB的以上的天線。為實(shí)現(xiàn)這樣的天線,對(duì)面天線而言,主要是應(yīng)按要求的副瓣電平來設(shè)計(jì)天線口徑照射函數(shù),實(shí)現(xiàn)所需的加權(quán)。具體實(shí)現(xiàn)辦法是:可在饋線網(wǎng)絡(luò)中采用不等功率分配器或衰減器加等功率分配器,也可將衰減器與不等功率分配器混用。此外天線反射面的加工必須嚴(yán)格保證公差要求,使天線口徑面上的實(shí)際電流分布與理論上所要求的分布在幅度和相位上的誤差低于所容許的范圍。對(duì)于陣列天線,為獲得低副瓣性能,除幅度加權(quán)外,還可采用密度加權(quán)、相位加權(quán)等方法來實(shí)現(xiàn)等效的幅度加權(quán)口徑照射函數(shù)。陣列中各天線單元激勵(lì)電流的幅度和相位誤差以及各天線單元的安裝公差,應(yīng)嚴(yán)格低于額定副瓣電平所容許的范圍。此外,設(shè)計(jì)中還應(yīng)考慮各天線單元之間的互耦效應(yīng)。同時(shí),因?yàn)樘炀€波束可以在一個(gè)較大的空間范圍內(nèi)進(jìn)行掃描,隨著掃描角的變化,天線單元之間的互耦也會(huì)發(fā)生變化,各天線單元激勵(lì)電流的幅度和相位也會(huì)發(fā)生變化,所以為了實(shí)現(xiàn)低副瓣與超低副瓣電平,還必須考慮天線波束掃描產(chǎn)生的影響。除了精心設(shè)計(jì)天線單元,采用單元之間的去耦措施外,解決此問題的一種思路是統(tǒng)一設(shè)計(jì)天線單元和饋電網(wǎng)絡(luò)。饋電網(wǎng)絡(luò)的設(shè)計(jì),要考慮天線單元之間互耦隨波束掃描而變化的因素。在一定條件下,饋電網(wǎng)絡(luò)的設(shè)計(jì)應(yīng)具有隨波束掃描變化而進(jìn)行自適應(yīng)調(diào)整的能力。
密度加權(quán)天線陣是一種不等間距加權(quán)天線陣。不等間距天線陣中各有源天線單元的間距是不等的,靠近陣列中心的單元其間距小些,偏離陣列中心越遠(yuǎn)的單元,其間距越大,但各天線單元激勵(lì)電流的幅度都相同。密度加權(quán)天線陣是以抬高遠(yuǎn)區(qū)副瓣電平為代價(jià)(會(huì)因此降低天線增益)來降低主瓣附近的副瓣電平。
對(duì)采用數(shù)字式移相器的天線陣列,如果在波束控制信號(hào)之外還將相位加權(quán)控制信號(hào)加到陣列中某些單元的移相器上,改變陣列各天線單元激勵(lì)電流的相位,那么也可以得到類似于加權(quán)的效果,降低天線波瓣主瓣附近副瓣電平。
2.3.4陣列單元隨機(jī)幅度與相位誤差的影響
相控陣天線中各單元的激勵(lì)電流在幅度和相位上存在著隨機(jī)幅度與相位誤差(不可能完全相同),引起幅相誤差的原因很多,如天線單元方向圖的不一致,天線單元的安裝誤差、天線單元的損壞、天線單元之間互耦引起的天線單元的阻抗變化和駐波變化、饋線各單元通道之間的幅相誤差(如移相器的誤差,阻抗不匹配引起反射所產(chǎn)生的幅相誤差、溫度變化影響等)。這類誤差具有隨機(jī)性,對(duì)天線波瓣的副瓣電平、天線增益以及波束指向等均有重要影響。但總的來說,各天線單元的隨機(jī)幅相誤差對(duì)天線增益的影響較大,對(duì)天線副瓣和陣列波束的指向精度的影響較小。
采用集中式發(fā)射機(jī)或子陣式發(fā)射機(jī)的相控陣?yán)走_(dá),一部發(fā)射機(jī)要負(fù)責(zé)給整個(gè)發(fā)射相控陣天線或發(fā)射天線子陣饋電。從發(fā)射機(jī)輸出端到每一個(gè)天線單元,必須有一個(gè)發(fā)射饋線系統(tǒng),將發(fā)射機(jī)輸出信號(hào)功率分配到各個(gè)天線單元。對(duì)于接收相控陣天線,各個(gè)天線單元接收到的信號(hào),必須經(jīng)過一個(gè)接收饋線系統(tǒng)逐級(jí)相加,然后送至接收機(jī)輸入端。發(fā)射或接收饋線系統(tǒng)都由許多不同的饋線元件如功率分配器、移相器、傳輸線段、調(diào)諧元件、定向耦合器等組成,各個(gè)饋線元件的連接不可能做到完全匹配,這些連接點(diǎn)處,存在電磁波反射。當(dāng)各個(gè)節(jié)點(diǎn)處的多次發(fā)射波重新到達(dá)天線單元(對(duì)發(fā)射陣)或接收機(jī)輸入端(對(duì)接收機(jī))時(shí),這些反射波與主入射波疊加,對(duì)發(fā)射陣來說,使各天線單元輻射出去的信號(hào)的相位和幅度發(fā)生變化,對(duì)接收陣而言,則使各天線單元接收到的信號(hào)在到達(dá)接收機(jī)輸入端時(shí)產(chǎn)生幅度和相位起伏。
2.4 互耦效應(yīng)對(duì)陣性能的影響
微帶陣列天線中,各微帶元之間存在互耦效應(yīng),將導(dǎo)致:
1)單元在陣中的方向圖與孤立元的方向圖不同;
2)陣中單元的輸入阻抗與孤立元的輸入阻抗不同;
3)對(duì)于相控陣,陣中單元的輸入阻抗將隨掃描角的改變而改變,這會(huì)引起陣的失配和單元效率(或增益)的降低;
4)天線的極化特性要變壞
2.4.1互耦對(duì)陣元方向圖的影響
設(shè)M×N個(gè)微帶天線元組成的陣列,陣中只有第j個(gè)單元接上電源,而其余單元都端接匹配負(fù)載。從物理意義上,可以看出此時(shí)單元在陣中的方向圖將不同于孤立元的方向圖(存在互耦的影響)。互耦的存在將使第j個(gè)元上的輻射的能量有一部分耦合到其它陣元,耦合能量的一部分被其端接負(fù)載所消耗,另一部分將再輻射,因此,陣中單元方向圖將不同于孤立元的方向圖。而且,對(duì)于有限數(shù)目陣元組成的陣列,由于各陣元再陣中所處的位置不同,它所受到的互耦影響也不同,故再陣中單元方向圖也不相同。只有在無限陣列中,各元在陣中單元方向圖才相同。
嚴(yán)格的講,由于互耦的影響,將使微帶天線貼片上電流分布規(guī)律也有變化。特別是對(duì)相控陣天線,隨著掃描角的變化,電流分布也要改變。
對(duì)于一個(gè)大陣,由于陣的總方向圖的主瓣很窄,而一般陣元的方向圖主瓣很寬。即陣元方向圖對(duì)陣的總方向圖中主瓣和前面幾個(gè)旁瓣的影響不太大。在這種情況下,計(jì)算總方向圖時(shí),可以忽略互耦影響,這就是一般陣天線中常用的分析方法,這是一種近似方法。而對(duì)于掃描波束的相控陣天線,就不能忽略這種互耦影響。
2.4.2互耦對(duì)陣元輸入阻抗和匹配的影響
兩種分析方法:互阻抗法和散射矩陣法(兩種方法得到的結(jié)果相同)
有源陣列的輸入阻抗將隨波束掃描方向的變化而變化,這是由于互耦影響形成的。對(duì)于一個(gè)有限尺寸的陣列,由于各陣元在陣中的位置不同,其互阻抗也不同,所以一般來說,各陣元的有源輸入阻抗也不完全相同。嚴(yán)格的說,只有無限大尺寸的陣列,各陣元在陣中所處的環(huán)境完全相同,那么各陣元的有源輸入阻抗才會(huì)相同。對(duì)于有限尺寸的大陣,除位于陣邊緣的少數(shù)陣元外,其它多數(shù)陣元的輸入阻抗可以近似認(rèn)為是相同的。
如果連接電源和陣元之間的傳輸線已與電源內(nèi)阻抗相匹配,則在第mn個(gè)元輸入端處的反射系數(shù)為:
可見,反射系數(shù)也將隨波束掃描方向的改變而改變,所以在相控陣天線中不僅需要考慮到陣元在一定的頻帶范圍內(nèi)的阻抗匹配(即寬帶匹配),而且還要考慮到在一定的掃描范圍內(nèi)的阻抗匹配(即寬角匹配)。這是相控陣天線與非電控掃描天線以及一般天線的不同之處。后兩者只需要考慮寬帶阻抗匹配。
利用互耦系數(shù)構(gòu)成的散射矩陣來計(jì)算反射系數(shù)隨掃描方向的變化是較為直接而又簡便的方法。這是因?yàn)樯⑸渚仃囍苯优c入射電壓波和反射電壓波相聯(lián)系,而且在微波網(wǎng)絡(luò)中能直接測(cè)量的是耦合系數(shù)(或稱為散射系數(shù))。
2.4.3互耦對(duì)相控陣天線增益的影響
2.4.4確定微帶天線元之間互耦的方法
兩種方法:一是通過實(shí)驗(yàn)測(cè)量,二是利用分析和計(jì)算方法得出
a).實(shí)驗(yàn)測(cè)定法
確定各元之間互耦的一種最符合實(shí)際的的方法是直接在陣中進(jìn)行測(cè)量,實(shí)際上,利用散射系數(shù)的互易性,以及陣結(jié)構(gòu)的對(duì)稱性可以使測(cè)量次數(shù)大大減小。同時(shí),對(duì)于大陣,在陣中除靠邊緣的陣元外,對(duì)位于陣中間的單元可近似認(rèn)為它們所處的陣環(huán)境相同。因此,可以認(rèn)為它們的反射系數(shù)相同,這樣只要選擇在陣中不同位置的幾個(gè)典型單元,確定它們的反射系數(shù)就可以反映整個(gè)陣的反射特性。
通常在設(shè)計(jì)陣時(shí),往往只用兩個(gè)陣元,只需要實(shí)測(cè)這兩個(gè)陣元之間的耦合系數(shù),而忽略其它陣元對(duì)它們的影響。因此,只要測(cè)出這兩個(gè)元在不同取向和位置時(shí)的耦合系數(shù),據(jù)此計(jì)算陣的反射系數(shù),并設(shè)計(jì)匹配措施。但要注意一點(diǎn),對(duì)于波導(dǎo)型、縫隙或振子陣元,這樣的測(cè)量只要在一塊較大的金屬板(作為接地平面)上放置陣元即可。對(duì)微帶特性元除了接地平面外,還必須考慮它們之間有介質(zhì)基片,這是不能忽略的。
元間距在幾個(gè)波長范圍內(nèi)的耦合系數(shù)變化的一般規(guī)律:
1)隨著元間距的加大,耦合系數(shù)減小,在E面耦合系數(shù)近似按1/d減小;在H面耦合系數(shù)減小更快,近似按1/d^2^減小。而耦合系數(shù)的相位滯后基本上按kd成直線變化。這意味著在微帶基片較薄和間距不太大時(shí),耦合主要取決于空間輻射波,表面波耦合不占主要部分。
2)E面和H面耦合曲線是不同的,因此微帶元的相對(duì)取向位置不同,它們之間的耦合也不相同。
3)考慮其它陣元存在對(duì)互耦的影響時(shí),法線它對(duì)E面耦合影響稍大,使耦合系數(shù)比只有兩元時(shí)要大一些,而相位滯后要變小一些。其它陣元存在對(duì)H面耦合的影響較小。因此作為一種近似計(jì)算,利用兩元間的互耦系數(shù)來計(jì)算陣中的反射系數(shù)和輸入阻抗還是可行的,特別對(duì)較小的陣。
b).用反應(yīng)原理計(jì)算互耦
c).無限周期陣列概念與波導(dǎo)模擬器
上面討論的是先用實(shí)驗(yàn)或計(jì)算機(jī)來確定各元間的互導(dǎo)納或散射系數(shù),然后再將所有元的互耦影響一一疊加起來,從而得到陣中單元的輸入阻抗或反射系數(shù)的方法稱為逐元法,該法的優(yōu)點(diǎn)是直觀,可以預(yù)測(cè)出再陣中不同位置的陣元性能,方法不僅適用平面陣也適用共形陣。所以,逐元法再中小尺寸的平面陣和共形陣中應(yīng)用最廣泛。但對(duì)于大陣,由于陣元數(shù)目多,使計(jì)算或?qū)嶒?yàn)工作量大大增加,這時(shí),常采用無限周期陣列的概念,因?yàn)榇箨囍虚g部分的單元再陣中所處的環(huán)境基本相同,所以再陣中間不同位置的單元的性能基本一致,因此,預(yù)測(cè)大陣性能可用無限陣列來近似,在無限陣中每個(gè)陣元所處的環(huán)境完全相同,陣中各元的性能也完全相同。分析無限陣列,不是先求各元間的互耦而是直接建立求陣中單元輸入阻抗或反射系數(shù)的方程。由于無限陣是一個(gè)周期結(jié)構(gòu),因而可利用弗洛蓋特(Floquet)定理來建立陣的場(chǎng)方程。常用的解法有場(chǎng)匹配法、復(fù)功率法、積分方程法(用矩量法求解)、變分法和留數(shù)法等。利用無限周期陣列模型與逐元法相比有很多優(yōu)點(diǎn)。首先它已將所有陣元存在的互耦影響全部自動(dòng)考慮在內(nèi),所以方法比較嚴(yán)格。其次,它也考慮了陣元上的場(chǎng)分布受互耦的影響,特別是場(chǎng)分布隨掃描方向而變化的影響。因此,用無限陣列模型可以預(yù)測(cè)出陣在掃描時(shí)是否會(huì)出現(xiàn)“盲點(diǎn)”,所以這種方法已在分析波導(dǎo)型、縫隙型和振子型陣天線中廣泛應(yīng)用。對(duì)于微帶天線元組成的大陣,原則上也可以利用這種方法。
基于無限陣列概念還發(fā)展了一種實(shí)驗(yàn)?zāi)M技術(shù)用來預(yù)測(cè)相控陣天線的反射特性。這種技術(shù)是利用波導(dǎo)模擬器來完成的。
2.5 輻射單元、排列柵格和陣形
-
無線電
+關(guān)注
關(guān)注
60文章
2143瀏覽量
116474 -
導(dǎo)彈
+關(guān)注
關(guān)注
2文章
75瀏覽量
20497 -
微帶天線
+關(guān)注
關(guān)注
5文章
82瀏覽量
23074
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論