在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

使用LIME解釋CNN

穎脈Imgtec ? 2022-11-30 15:45 ? 次閱讀

作者:Mehul Gupta

來(lái)源:DeepHub IMBA

我們已經(jīng)介紹過(guò)很多解析機(jī)器學(xué)習(xí)模型的方法,例如如pdp、LIME和SHAP,但是這些方法都是用在表格數(shù)據(jù)的,他們能不能用在神經(jīng)網(wǎng)絡(luò)模型呢?今天我們來(lái)LIME解釋CNN。

圖像與表格數(shù)據(jù)集有很大不同(顯然)。如果你還記得,在之前我們討論過(guò)的任何解釋方法中,我們都是根據(jù)特征重要性,度量或可視化來(lái)解釋模型的。比如特征“A”在預(yù)測(cè)中比特征“B”有更大的影響力。但在圖像中沒(méi)有任何可以命名的特定特征,那么怎么進(jìn)行解釋呢?

一般情況下我們都是用突出顯示圖像中模型預(yù)測(cè)的重要區(qū)域的方法觀察可解釋性,這就要求了解如何調(diào)整LIME方法來(lái)合并圖像,我們先簡(jiǎn)單了解一下LIME是怎么工作的。

5e9bfc46-7045-11ed-b116-dac502259ad0.png

LIME在處理表格數(shù)據(jù)時(shí)為訓(xùn)練數(shù)據(jù)集生成摘要統(tǒng)計(jì):

使用匯總統(tǒng)計(jì)生成一個(gè)新的人造數(shù)據(jù)集

從原始數(shù)據(jù)集中隨機(jī)提取樣本

根據(jù)與隨機(jī)樣本的接近程度為生成人造數(shù)據(jù)集中的樣本分配權(quán)重

用這些加權(quán)樣本訓(xùn)練一個(gè)白盒模型

解釋白盒模型

就圖像而言,上述方法的主要障礙是如何生成隨機(jī)樣本,因?yàn)樵谶@種情況下匯總統(tǒng)計(jì)將沒(méi)有任何用處。


如何生成人造數(shù)據(jù)集?最簡(jiǎn)單的方法是,從數(shù)據(jù)集中提取一個(gè)隨機(jī)樣本,隨機(jī)打開(kāi)(1)和關(guān)閉(0)一些像素來(lái)生成新的數(shù)據(jù)集但是通常在圖像中,出現(xiàn)的對(duì)象(如狗vs貓的分類中的:狗&貓)導(dǎo)致模型的預(yù)測(cè)會(huì)跨越多個(gè)像素,而不是一個(gè)像素。所以即使你關(guān)掉一兩個(gè)像素,它們看起來(lái)仍然和我們選擇樣本非常相似。所以這里需要做的是設(shè)置一個(gè)相鄰像素池的ON和OFF,這樣才能保證創(chuàng)造的人工數(shù)據(jù)集的隨機(jī)性。所以將圖像分割成多個(gè)稱為超像素的片段,然后打開(kāi)和關(guān)閉這些超像素來(lái)生成隨機(jī)樣本。讓我們使用LIME進(jìn)行二進(jìn)制分類來(lái)解釋CNN的代碼。例如我們有以下的兩類數(shù)據(jù)。類別0: 帶有任意大小的白色矩形的隨機(jī)圖像5ecef33a-7045-11ed-b116-dac502259ad0.png5efbf4d4-7045-11ed-b116-dac502259ad0.png類別1:隨機(jī)生成的圖像(沒(méi)有白色矩形)5f258790-7045-11ed-b116-dac502259ad0.png

5f2fdf7e-7045-11ed-b116-dac502259ad0.png

然后創(chuàng)建一個(gè)簡(jiǎn)單的CNN模型


LIME示例

%matplotlib inline
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from keras.layers import Input, Dense, Embedding, Flatten
from keras.layers import SpatialDropout1D
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.models import Sequential
from randimage import get_random_image, show_array
import random
import pandas as pd
import numpy as np
import lime
from lime import lime_image
from skimage.segmentation import mark_boundaries

#preparing above dataset artificially
training_dataset = []
training_label = []
for x in range(200):

img_size = (64,64)
img = get_random_image(img_size)

a,b = random.randrange(0,img_size[0]/2),random.randrange(0,img_size[0]/2)
c,d = random.randrange(img_size[0]/2,img_size[0]),random.randrange(img_size[0]/2,img_size[0])

value = random.sample([True,False],1)[0]
if value==False:
img[a:c,b:d,0] = 100
img[a:c,b:d,1] = 100
img[a:c,b:d,2] = 100

training_dataset.append(img)
training_label.append(value)

#training baseline CNN model
training_label = [1-x for x in training_label]
X_train, X_val, Y_train, Y_val = train_test_split(np.array(training_dataset).reshape(-1,64,64,3),np.array(training_label).reshape(-1,1), test_size=0.1, random_state=42)

epochs = 10
batch_size = 32
model = Sequential()
model.add(Conv2D(32, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Flatten())
# Output layer
model.add(Dense(32,activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train, Y_train, validation_data=(X_val, Y_val), epochs=epochs, batch_size=batch_size, verbose=1)

讓我們引入LIME

x=10
explainer = lime_image.LimeImageExplainer(random_state=42)
explanation = explainer.explain_instance(
X_val[x],
model.predict,top_labels=2)
)

image, mask = explanation.get_image_and_mask(0, positives_only=True,
hide_rest=True)

上面的代碼片段需要一些解釋我們初始化了LimeImageExplainer對(duì)象,該對(duì)象使用explain_instance解釋特定示例的輸出。這里我們從驗(yàn)證集中選取了第10個(gè)樣本,Get_image_and_mask()返回模型與原始圖像一起預(yù)測(cè)的高亮區(qū)域。讓我們看看一些樣本,它們實(shí)際上是1(隨機(jī)圖像),但檢測(cè)到為0(帶白框的隨機(jī)圖像)5f578f74-7045-11ed-b116-dac502259ad0.png5f63c582-7045-11ed-b116-dac502259ad0.png可以看到下圖有黃色的突出顯示區(qū)域,這張圖片的標(biāo)簽為1,但被標(biāo)記為0,這是因?yàn)楦吡溜@示的區(qū)域看起來(lái)像一個(gè)矩形,因此讓模型感到困惑,也就是說(shuō)模型錯(cuò)吧黃色標(biāo)記的部分當(dāng)成了我們需要判斷的白色矩形遮蔽。5f8d5320-7045-11ed-b116-dac502259ad0.png5f99bc14-7045-11ed-b116-dac502259ad0.png再看看上面兩個(gè)圖,與前面的例子類似,模型也預(yù)測(cè)了class=0。通過(guò)黃色區(qū)域可以判斷,某種形狀可能被模型曲解為白色方框了。

這樣我們就可以理解模型導(dǎo)致錯(cuò)誤分類的實(shí)際問(wèn)題是什么,這就是為什么可解釋和可解釋的人工智能如此重要。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8423

    瀏覽量

    132750
  • cnn
    cnn
    +關(guān)注

    關(guān)注

    3

    文章

    352

    瀏覽量

    22241
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    cnn常用的幾個(gè)模型有哪些

    CNN(卷積神經(jīng)網(wǎng)絡(luò))是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、自然語(yǔ)言處理等領(lǐng)域。以下是一些常用的CNN模型: LeNet-5:LeNet-5是最早的卷積神經(jīng)網(wǎng)絡(luò)之一,由Yann LeCun等人于
    的頭像 發(fā)表于 07-11 14:58 ?892次閱讀

    圖像分割與語(yǔ)義分割中的CNN模型綜述

    圖像分割與語(yǔ)義分割是計(jì)算機(jī)視覺(jué)領(lǐng)域的重要任務(wù),旨在將圖像劃分為多個(gè)具有特定語(yǔ)義含義的區(qū)域或?qū)ο?。卷積神經(jīng)網(wǎng)絡(luò)(CNN)作為深度學(xué)習(xí)的一種核心模型,在圖像分割與語(yǔ)義分割中發(fā)揮著至關(guān)重要的作用。本文將從CNN模型的基本原理、在圖像分割與語(yǔ)義分割中的應(yīng)用、以及具體的模型架構(gòu)和調(diào)
    的頭像 發(fā)表于 07-09 11:51 ?984次閱讀

    CNN與RNN的關(guān)系?

    在深度學(xué)習(xí)的廣闊領(lǐng)域中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)是兩種極為重要且各具特色的神經(jīng)網(wǎng)絡(luò)模型。它們各自在圖像處理、自然語(yǔ)言處理等領(lǐng)域展現(xiàn)出卓越的性能。本文將從概念、原理、應(yīng)用場(chǎng)景及代碼示例等方面詳細(xì)探討CNN與RNN的關(guān)系,旨在深入理解這兩種網(wǎng)絡(luò)模型及其在
    的頭像 發(fā)表于 07-08 16:56 ?790次閱讀

    CNN在多個(gè)領(lǐng)域中的應(yīng)用

    ,通過(guò)多層次的非線性變換,能夠捕捉到數(shù)據(jù)中的隱藏特征;而卷積神經(jīng)網(wǎng)絡(luò)(CNN),作為神經(jīng)網(wǎng)絡(luò)的一種特殊形式,更是在圖像識(shí)別、視頻處理等領(lǐng)域展現(xiàn)出了卓越的性能。本文旨在深入探究深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的基本原理、結(jié)構(gòu)特點(diǎn)及其在多個(gè)領(lǐng)域中的廣泛應(yīng)用。
    的頭像 發(fā)表于 07-08 10:44 ?1995次閱讀

    CNN的定義和優(yōu)勢(shì)

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)作為深度學(xué)習(xí)領(lǐng)域的核心成員,不僅在學(xué)術(shù)界引起了廣泛關(guān)注,更在工業(yè)界尤其是計(jì)算機(jī)視覺(jué)領(lǐng)域展現(xiàn)出了巨大的應(yīng)用價(jià)值。關(guān)于
    的頭像 發(fā)表于 07-05 17:37 ?4294次閱讀

    基于CNN的網(wǎng)絡(luò)入侵檢測(cè)系統(tǒng)設(shè)計(jì)

    入侵檢測(cè)提供了新的思路和方法。卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)作為深度學(xué)習(xí)的一種重要模型,以其強(qiáng)大的特征提取能力和模式識(shí)別能力,在網(wǎng)絡(luò)入侵檢測(cè)領(lǐng)域展現(xiàn)出巨大的潛力。
    的頭像 發(fā)表于 07-05 17:28 ?1130次閱讀

    如何在TensorFlow中構(gòu)建并訓(xùn)練CNN模型

    在TensorFlow中構(gòu)建并訓(xùn)練一個(gè)卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型是一個(gè)涉及多個(gè)步驟的過(guò)程,包括數(shù)據(jù)預(yù)處理、模型設(shè)計(jì)、編譯、訓(xùn)練以及評(píng)估。下面,我將詳細(xì)闡述這些步驟,并附上一個(gè)完整的代碼示例。
    的頭像 發(fā)表于 07-04 11:47 ?982次閱讀

    如何利用CNN實(shí)現(xiàn)圖像識(shí)別

    卷積神經(jīng)網(wǎng)絡(luò)(CNN)是深度學(xué)習(xí)領(lǐng)域中一種特別適用于圖像識(shí)別任務(wù)的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。它通過(guò)模擬人類視覺(jué)系統(tǒng)的處理方式,利用卷積、池化等操作,自動(dòng)提取圖像中的特征,進(jìn)而實(shí)現(xiàn)高效的圖像識(shí)別。本文將從CNN的基本原理、構(gòu)建過(guò)程、訓(xùn)練策略以及應(yīng)用場(chǎng)景等方面,詳細(xì)闡述如何利用
    的頭像 發(fā)表于 07-03 16:16 ?1432次閱讀

    NLP模型中RNN與CNN的選擇

    在自然語(yǔ)言處理(NLP)領(lǐng)域,循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)與卷積神經(jīng)網(wǎng)絡(luò)(CNN)是兩種極為重要且廣泛應(yīng)用的網(wǎng)絡(luò)結(jié)構(gòu)。它們各自具有獨(dú)特的優(yōu)勢(shì),適用于處理不同類型的NLP任務(wù)。本文旨在深入探討RNN與CNN
    的頭像 發(fā)表于 07-03 15:59 ?552次閱讀

    cnn卷積神經(jīng)網(wǎng)絡(luò)分類有哪些

    卷積神經(jīng)網(wǎng)絡(luò)(CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像分類、目標(biāo)檢測(cè)、語(yǔ)義分割等領(lǐng)域。本文將詳細(xì)介紹CNN在分類任務(wù)中的應(yīng)用,包括基本結(jié)構(gòu)、關(guān)鍵技術(shù)、常見(jiàn)網(wǎng)絡(luò)架構(gòu)以及實(shí)際應(yīng)用案例。 引言 1.1
    的頭像 發(fā)表于 07-03 09:28 ?642次閱讀

    cnn卷積神經(jīng)網(wǎng)絡(luò)三大特點(diǎn)是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡(jiǎn)稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語(yǔ)言處理等領(lǐng)域。CNN具有以下三大特點(diǎn): 局部連接
    的頭像 發(fā)表于 07-03 09:26 ?1400次閱讀

    CNN模型的基本原理、結(jié)構(gòu)、訓(xùn)練過(guò)程及應(yīng)用領(lǐng)域

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語(yǔ)言處理等領(lǐng)域。CNN模型的核心是卷積層
    的頭像 發(fā)表于 07-02 15:26 ?3788次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)cnn模型有哪些

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡(jiǎn)稱CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語(yǔ)言處理等領(lǐng)域。 CNN的基本概念 1.1 卷積層
    的頭像 發(fā)表于 07-02 15:24 ?737次閱讀

    深度神經(jīng)網(wǎng)絡(luò)模型cnn的基本概念、結(jié)構(gòu)及原理

    深度神經(jīng)網(wǎng)絡(luò)模型CNN(Convolutional Neural Network)是一種廣泛應(yīng)用于圖像識(shí)別、視頻分析和自然語(yǔ)言處理等領(lǐng)域的深度學(xué)習(xí)模型。 引言 深度學(xué)習(xí)是近年來(lái)人工智能領(lǐng)域的研究熱點(diǎn)
    的頭像 發(fā)表于 07-02 10:11 ?9774次閱讀

    基于Python和深度學(xué)習(xí)的CNN原理詳解

    卷積神經(jīng)網(wǎng)絡(luò) (CNN) 由各種類型的層組成,這些層協(xié)同工作以從輸入數(shù)據(jù)中學(xué)習(xí)分層表示。每個(gè)層在整體架構(gòu)中都發(fā)揮著獨(dú)特的作用。
    的頭像 發(fā)表于 04-06 05:51 ?2178次閱讀
    基于Python和深度學(xué)習(xí)的<b class='flag-5'>CNN</b>原理詳解
    主站蜘蛛池模板: 日本a级免费| 欧美日本综合| 好紧好爽太大了h快穿| 日本一区二区视频在线观看| 美女把尿口扒开让男人桶出水| 美女写真mm爽爽爽| 伊人欧美在线| 特级毛片aaaa免费观看| 日韩三级免费| 免费在线黄色网| 国产亚洲人成网站观看| 成年ssswww日本| 午夜精品免费| 美女大黄三级视频在线观看| 白浆喷射| 亚洲不卡视频| 亚洲电影在线看| 全日本爽视频在线| 国产小毛片| 亚洲成人午夜影院| 黑人黄色片| 中文字幕区| 亚洲美女爱爱| 全部免费特黄特色大片农村| 韩国免费特一级毛片| 午夜免费视频网站| 亚洲毛片大全| 天堂网在线最新版官网| 欧美一级免费观看| 国产欧美一区二区三区观看| 午夜视频高清在线aaa| 黄色国产精品| 亚洲性一区| 婷婷色在线播放| 毛片新网址| 亚洲偷自偷白图片| 国产香蕉98碰碰久久人人| 亚洲国产福利精品一区二区| 午夜性爽爽爽| 激情综合在线观看| 天天夜天天干|