LLC 變換器的設計涉及眾多的設計決策與關鍵參數,而且很多因素相互關聯。任何一個設計選擇都可能影響系統中的許多其他參數。LLC 諧振腔的設計是其中最大的挑戰,因為它決定了變換器響應負載、頻率和電壓變化的能力。因此,設計人員必須正確定義變換器負載和頻率的工作范圍,因為這些值會影響諧振腔的值與參數來。
本系列的兩篇文章將討論 LLC變換器設計的關鍵考量因素。 第I部分 探討了各種電源開關拓撲和 LLC 諧振腔的特性。本文為第II部分,將介紹 LLC 變換器設計中的重要參數,包括增益、負載、頻率和電感。
LLC變換器增益
影響LLC 變換器增益的兩個模塊是諧振腔和變壓器。諧振腔增益是可變的,具體取決于負載 (Q)、歸一化頻率 (fN)和歸一化電感 (LN)。變換器的增益響應 (MG為Q, LN和fN的函數,通過公式 (1) 來計算:
$$M_G(Q,L_N,f_N) = frac {V_{OUT(AC)}}{V_{IN(AC)}} = frac {f_N^2 times (L_N-1)} {(f_N^2 -1)^2 + (f_N^2 times (f_N^2 -1) times (L_N-1)^2 times Q^2}$$
變壓器增益則由變壓器原邊線圈的匝數與副邊線圈的匝數之比定義。該比率由變壓器的物理結構定義,所以一旦變換器開始工作,就不能輕易改變。
圖 1 顯示了 LLC 變換器的增益路徑。
圖 1:LLC 變換器的增益路徑
圖 2 顯示了帶變壓器的 LLC 諧振腔原理圖。
圖 2:帶變壓器的 LLC 諧振腔原理圖
變換器的總增益 (VOUT/ 五IN) 為兩個增益的乘積,可通過公式 (2) 來估算:
其中 n 為變壓器的匝數比,MG則為 LLC 諧振腔增益。
理想情況下,諧振腔不會放大或衰減信號,而是濾除諧波。這意味著諧振腔的標稱增益應為 1,并且變壓器應是改變輸出電壓電平的唯一階段。
但實際上,LLC 變換器常用于 AC/DC變換器。AC/DC 變換器通常由一個 AC/DC + PFC 轉換級和一個 LLC DC/DC 變換器組成,用于將電壓降到所需的水平(參見圖 3)。
圖3: AC/DC變換器功能模塊
AC/DC + PFC 級將 AC 輸入電壓 (VIN) (例如來自 AC 電源的功率)轉換為穩定的 DC 電壓,同時還保持輸入電流與 VIN 同相。PFC 級對確保設計符合國際標準(包括 ISO、UNSCC、IEEE 和 CISPR)規定的各項功率因數規范十分必要。AC/DC + PFC 級的輸出電壓 (VOUT) 在理想情況下是穩定的,但由于組件的非理想化, AC/DC 輸出端往往會出現電壓紋波,這通常是寄生電感和電容ESR導致的,這種電壓紋波也會出現在 LLC 變換器的輸入端。
由于變換器的 VIN 和變壓器固定增益帶來的變數,LLC 諧振腔需要補償 VIN 帶來的變化以獲得恒定的 VOUT。因此,如果 VIN 低于標稱值,諧振腔可稍稍放大信號以產生最大諧振腔增益;如果 VIN 超過標稱值,則最小諧振增益可確保變壓器原邊繞組處的電壓穩定在標稱值,以保持穩定的 VOUT。
標稱諧振增益 (MG- 諾米) 可以使用公式 (3) 來計算 (MG- 諾米):
最大諧振增益 (MG_MAX) 可以使用公式 (4) 來計算:
最小諧振增益 (MGMY_ 明度) 可以使用公式 (5) 來計算:
圖 4 顯示了 LLC 變換器的增益響應以及所需的最大、最小和標稱諧振腔增益值。
圖 4:LLC 變換器增益響應
HR1211卓越的效率、性能、功率密度以及靈活性將助力適配器市場走入新時代
N145 - 多模式 PFC + 電流模式 LLC 控制器
HR1211 是一款集成了多模式 PFC 和電流模式 HB LLC 控制器且具備極高性能的組合控制器
LLC變換器負載
如 第I部分所述,負載通過品質因數 (Q) 來表示,它影響諧振腔的最大增益以及峰值增益頻率。諧振腔的峰值增益隨負載的增加而降低。因此,即使在最壞的情況下(即負載最大時),滿足最大增益要求也是非常重要的。
圖 5 顯示了 LLC 變換器對一系列負載的頻率響應。
圖 5:LLC 變換器頻率響應
LLC變換器開關頻率
負載對增益的影響是無法控制的,但可以通過改變 MOSFET 的開關頻率 (fSW) 來保持電路增益。如圖 5 所示,盡管負載會影響變換器的最大增益,但增加負載也會將頻率 (fMG_MAX 馬克號) 拉至更高水平,并產生最大增益。
圖 6 顯示了 LLC 諧振腔中一系列不同負載的最大增益點,以虛線繪制。這條線將增益響應分為兩個不同的區域。在感性區域(右側),發生零電壓切換,并且增益隨著頻率的降低而增加,直至達到峰值增益頻率。然后變換器進入容性區域(峰值增益頻率的左側),在該區域降低頻率也會降低增益。感性區域允許通過頻率變化進行穩定的增益控制。
圖 6:頻率響應的容性區域和感性區域
一般不建議進入容性區域,因為當低邊MOSFET (LS-FET) (S2) 晶體管的體二極管處于反向恢復狀態時,高邊MOSFET (HS-FET) (S1) 可能導通(參見圖7)。這會造成潛在的半橋直通條件,從而導致 S2發生故障,或者,至少會降低變換器的效率。
圖 7:電源開關中的直通電流
不同的負載產生不同的頻率響應和最大增益頻率。要確定最小fSW,需要考慮最壞情況,即從最小負載轉換至最大負載時(參見圖 8)。當負載較小時,變換器工作在感性區域,但如果負載突然增加,工作點將進入容性區域。因此,應增加最小頻率 (fMIN) 以確保所有負載的工作點都保持在感性區域。
圖 8:負載轉移對工作區域的影響
因此,要建立穩定的頻率范圍, fMIN 必須等于過載情況下變換器的最大增益頻率 (f概述)(參見圖 9)。
圖 9:開關頻率的穩定、不穩定和工作窗口期范圍
一旦得到變換器的最小頻率,就可以建立一個工作 fSW 范圍。變換器的最大頻率(fMAX) 受控制器和 MOSFET 最大頻率的限制。但工作窗口期不需要很大,它可以通過最大和最小增益頻率來定義,只要處于穩定頻率范圍即可。
LLC 諧振腔電感
歸一化 LN 定義了峰值增益斜率,該斜率標志著感性區域和容性區域之間的界限,如圖 10 所示。 在相同負載條件下,諧振腔的峰值增益取決于歸一化 LN。
圖 10:具有不同歸一化電感的 LLC 變換器的最大增益曲線
較小的 LN 可為更廣范圍的負載和操作提供高增益。另一方面,較小的 LN 也會帶來較高的磁化電流,并使效率降低。
要選擇適當的歸一化 LN值,設計人員需要考慮負載最大時的最壞情況。LN 的選擇必須能夠提供足夠的增益來補償 VIN的任何缺陷,即使在過載條件下也是如此。
結語
LLC 變換器的設計是一個漫長而復雜的過程,需要根據特定的應用要求考慮多種因素。由于大量的參數以及這些參數之間的關系,設計過程通??缭蕉啻蔚c計算,可能導致設計時間過長。而MPS 提供 LLC設計工具 以及以及可配置的LLC 控制器 2010年3月30日 MIPF3等工具,可以顯著加速開發過程。
審核編輯:彭菁
-
變換器
+關注
關注
17文章
2099瀏覽量
109305 -
LLC
+關注
關注
36文章
567瀏覽量
76783 -
諧振
+關注
關注
5文章
372瀏覽量
39587 -
MPS
+關注
關注
26文章
267瀏覽量
64293
發布評論請先 登錄
相關推薦
評論